Skip to main content

Morpho-anatomical, Physiological, Biochemical and Molecular Responses of Plants to Air Pollution

  • Chapter
  • First Online:
Harsh Environment and Plant Resilience

Abstract

Air pollution comprises a range of substances derived from various sources and chemical reactions inside the atmosphere, which are injurious to humans, plants, microbes and natural ecosystems. The composition of major air pollutants includes oxides of sulphur and nitrogen, ozone, volatile organic carbons, carbon monoxide, fluorides, particulate matters and so on. Plants are sessile in nature, and thus interact and develop different approaches under challenging environmental conditions. Plants’ response to air pollution exhibited acute or chronic injury, which depends on the concentration of pollutants, exposure duration, season and plant genotype. These pollutants have altered plant growth, gas exchange parameters, biochemical attributes, antioxidant activity, gene expression and yield attributes. More specifically, quite often, they have shown changes in foliar feature and photosynthetic processes, and accelerate the production of reactive oxygen species (hydroxyl radicals, singlet oxygen and hydrogen peroxide) which are harmful to the physiological, biochemical and metabolic activities of the plants. Neutralization of free radicals depends on the production and combined operation of enzymatic and nonenzymatic antioxidants. Overall, some plant species have shown tolerance and avoidance mechanisms, and/or substantial degree of damage under pollution load. At the same time, some kinds of adaptation have also been noticed at the physiological, biochemical and genotoxic levels. This chapter highlights the current advances in the development of plant response to major air pollutants, with special reference to structural, functional, biochemical/metabolic responses, gene expression and yield attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo Gamar MI, Kisiala A, Emery RJN, Yeung E, Stone SL, Qaderi MM (2019) Elevated carbon dioxide decreases the adverse effects of higher temperature and drought stress by mitigating oxidative stress and improving water status in Arabidopsis thaliana. Planta 250:1191–1214

    Article  CAS  PubMed  Google Scholar 

  • Adrees M, Saleem F, Jabeen F, Rizwan M, Ali S, Khalid S, Ibrahim M, Iqbal N, Abbas F (2016) Effects of ambient gaseous pollutants on photosynthesis, growth, yield and grain quality of selected crops grown at different sites varying in pollution levels. Arch Agron Soil Sci 62:1195–1207

    Article  CAS  Google Scholar 

  • Agrawal M, Deepak SS (2003) Physiological and biochemical responses of two cultivars of wheat to elevated levels of CO2 and SO2, singly and in combination. Environ Poll 121:189–197

    Article  CAS  Google Scholar 

  • Agrawal M, Nandi PK, Rao DN (1982) Effects of ozone and Sulphur dioxide pollutants separately and in mixture on chlorophyll and carotenoid pigments of Oryza sativa (rice). Water Air Soil Poll 18:449–454

    Article  CAS  Google Scholar 

  • Agrawal GK, Rakwal R, Yonekura M, Akihiro K, Saji H (2002) Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics 2:947–959

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA (2008) Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob Change Bio 14:1642–1650

    Article  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free air-CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol 63:637–661

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA, Lemonnier P, Wedow JM (2020) The influence of rising tropospheric carbon dioxide and ozone on plant productivity. Plant Biol 22(Suppl. 1):5–11

    Article  CAS  PubMed  Google Scholar 

  • Ansari MK, Mahmooduzzafar, Iqbal M (1993) Structural responses of a medicinally important plant, Xanthium strumarium, to coal-smoke pollution. In: Govil JN, Singh VK, Hashmi S (eds) Medicinal plants: new vistas of research part II. Today and Tomorrow’s Printers and Publishers, New Delhi, pp 555–559

    Google Scholar 

  • ATSDR (2003) Toxicological profile for fluorides, hydrogen fluoride, and fluorine; US Department of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry; Atlanta, GA. https://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=212&tid=38. Accessed April 23, 2020

  • Balasooriya H, Dasanayake K, Ajlouni S (2020) Bioaccessibility of micronutrients in fresh and frozen strawberry fruits grown under elevated carbon dioxide and temperature. Food Chem 309:125662

    Article  CAS  PubMed  Google Scholar 

  • Baldauf R (2017) Roadside vegetation design to improve local, near-road air quality. Transp Res D Transp Environ 52:354–361

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnard WR, Nordstrom DK (1982) Flouride in precipitation-II. Implications for the geochemical cycling of fluorine. Atmos Environ 16:105–111

    Article  CAS  Google Scholar 

  • Bell JNB, Honou SL, Power SA (2011) Effects of vehicle exhaust emissions on urban wild plant species. Environ Poll 159:1984–1990

    Article  CAS  Google Scholar 

  • Bellani LM, Paoletti E (1992) New type of damage to Quercus ilex: pollen generation and hydration ability. Europ J For Pathol 22:284–290

    Article  Google Scholar 

  • Bermejo-Orduna R, McBride JR, Shiraishi K, Elustondo D, Lasheras E, Santamaría JM (2014) Biomonitoring of traffic-related nitrogen pollution using Letharia vulpina (L.) Hue in the Sierra Nevada, California. Sci Total Environ 490:205–212

    Article  CAS  PubMed  Google Scholar 

  • Biswas DK, Xu H, Li YG, Sun JZ, Wang XZ, Han XG, Jiang GM (2008) Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Glob Chang Biol 14:46–59

    Article  Google Scholar 

  • Black VJ, Unsworth MH (1979) Effect of low concentration of Sulphur dioxide on net photosynthesis and dark respiration of Vicia faba. J Exp Bot 30:473–483

    Article  CAS  Google Scholar 

  • Bowes G (1993) Facing the inevitable: plants and increasing atmospheric CO2. Ann Rev Plant Physiol Plant Mol Biol 44:309–332

    Article  CAS  Google Scholar 

  • Brantley HL, Hagler GSW, Deshmukh PJ, Baldauf RW (2014) Field assessment of the effects of roadside vegetation on near-road black carbon and particulate matter. Sci Total Environ 468–469:120–129

    Article  PubMed  CAS  Google Scholar 

  • Broberg M, Högy P, Pleijel H (2017) CO2-induced changes in wheat grain composition: meta-analysis and response functions. Agronomy 7:32

    Article  CAS  Google Scholar 

  • Brook DR, Brook RJ, Rajagopalan S (2003) Air pollution: the “heart” of the problem. Curr Hypertens Rep 5:32–39

    Article  PubMed  Google Scholar 

  • Brooker RW (2006) Plant–plant interactions and environmental change. New Phytol 171:271–284

    Article  PubMed  Google Scholar 

  • Butterly CR, Armstrong R, Chen D, Tang C (2016) Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum. Ann Bot 117:177–185

    Google Scholar 

  • Cai H, Dong Y, Li Y, Li D, Peng C, Zhang Z, Wan X (2016) Physiological and cellular responses to fluoride stress in tea (Camellia sinensis) leaves. Acta Physiol Plant 38:144

    Article  CAS  Google Scholar 

  • Calatayud A, Ramirez JW, Iglesias DJ, Barreno E (2002) Effects of ozone on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiol Plant 116:308–316

    Article  CAS  Google Scholar 

  • Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104:18866–18870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cape JN, Fowler D, Davison A (2003) Ecological effects of sulfur dioxide, fluorides, and minor air pollutants: recent trends and research needs. Environ Int 29:201–211

    Article  CAS  PubMed  Google Scholar 

  • Carlson CL, Adriano DC (1993) Environmental impacts of coal combustion residues. J Environ Qual 22:227–247

    Article  CAS  Google Scholar 

  • Cavanagh JAE, Clemons J (2006) Do urban forests enhance air quality? Aust J Environ Manag 13:120–130

    Article  Google Scholar 

  • Constantinidou HA, Kozlowski TT (1979) Effects of sulfur dioxide and ozone on Ulmus americana seedlings. I. Visible injury and growth. Can J Bot 57:170–175

    Article  CAS  Google Scholar 

  • CPCB (2020) Air quality improving in India as 130 bn people stay home amid lockdown. https://www.business-standard.com/topic/central-pollution-control-board. Accessed April 4, 2020

  • De Souza AP, Gaspar M, Da Silva EA, Ulian EC, Waclawovsky AJ, Nishiyama MY Jr, Dos Santos RV, Teixeira MM, Souza GM, Buckeridge MS (2008) Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ 31:1116–1127

    Article  PubMed  CAS  Google Scholar 

  • Divan AM Jr, Oliva MA, Ferreira FA (2008) Dispersal fluoride accumulation in eight plant species. Ecol Indic 8:454–461

    CAS  Google Scholar 

  • Dochinger LS, Jensen KF (1985) Effect of acid mist and air pollutants on yellow-poplar seedling height and leaf growth; Research Paper. NE-572; U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Broomall, PA, USA, pp 4

    Google Scholar 

  • Doley D (2010) Rapid quantitative assessment of visible injury to vegetation and visual amenity effects of fluoride air pollution. Environ Monit Asses 160:181–198

    Article  CAS  Google Scholar 

  • Dong J, Gruda N, Li X, Tang Y, Duan Z (2020) Impacts of elevated CO2 on nitrogen uptake of cucumber plants and nitrogen cycling in a greenhouse soil. App Soil Ecol 145:103342

    Article  Google Scholar 

  • Dzierzanowski K, Popek R, Gawronska H, Saebo A, Gawronski SW (2011) Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int J Phytoremediation 13:1037–1046

    Article  CAS  PubMed  Google Scholar 

  • Eastham AM, Ormrod DP (1986) Visible injury and growth responses of young cuttings of Populus canadensis and P. nigra to nitrogen dioxide and sulphur dioxide. Can J For Res 16:1289–1292

    Article  CAS  Google Scholar 

  • Elloumi N, Zouari M, Mezghani I, Ben Abdallah F, Woodward S, Kallel M (2017) Adaptive biochemical and physiological responses of Eriobotrya japonica to fluoride air pollution. Ecotoxicology 26:991–1001

    Article  CAS  PubMed  Google Scholar 

  • Elsewi AA, Grimm SR, Page AL, Straghan IR (1981) Boron enrichment of plants and soil treated with coal ash. J Plant Nut 3:409–427

    Article  Google Scholar 

  • Embiale A, Hussein M, Husen A, Sahile S, Mohammed K (2016) Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. J Agron 15:45–57

    Article  CAS  Google Scholar 

  • ESA (2020) Coronavirus: nitrogen dioxide emissions drop over Italy. https://www.esa.int/ESA_Multimedia/Videos/2020/03/Coronavirus_nitrogen_dioxide_emissions_drop_over_Italy. Accessed April 4, 2020

  • Fangmeier A, Bender J, Weigl HJ, Jager HJ (2002) Impact of mixture pollutants. In: Bell JNB, Treshow M (eds) Air pollution and plant life. Wiley, New York, pp 279–298

    Google Scholar 

  • Farage PK, Long SP, Lechner EG, Baker NR (1991) The sequence of change within the photosynthetic apparatus of wheat following short term exposure to ozone. Plant Physiol 95:529–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Arya KR, Kumar S, Gopal K, Joshi PC, Hans RK (2000) Industrial pollutants mediated damage to mango (Mangifera indica) crop: a case study. J Environ Biol 21:165–167

    Google Scholar 

  • Feng YW, Ogura N, Feng ZW, Zhang FZ, Shimizu H (2003) The concentration and sources of fluoride in atmospheric depositions in Beijing, China. Water Air Soil Poll 145:95–107

    Article  CAS  Google Scholar 

  • Feng ZZ, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology and yield of wheat (Triticum aestivum L.): a meta-analysis. Glob Chang Biol 142:2696–2708

    Article  Google Scholar 

  • Fernando N, Panozzo J, Tausz M, Norton R, Fitzgerald G, Khan A, Seneweera S (2015) Rising CO2 concentration altered wheat grain proteome and flour rheological characteristics. Food Chem 170:448–454

    Article  CAS  PubMed  Google Scholar 

  • Field CB, Jackson RB, Mooney HA (1995) Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ 18:1214–1225

    Article  Google Scholar 

  • Flowers MD, Fiscus EL, Burkey KO, Booker FL, Dubois JJB (2007) Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. Environ Exp Bot 61:190–198

    Article  CAS  Google Scholar 

  • Fluckiger W, Oertli JJ, Fluckiger H (1979) Relationship between stomatal diffusive resistance and various applied particle sizes on leaf surface. Z Pflanzenphysiol 91:173–175

    Article  Google Scholar 

  • Francini A, Nali C, Picchi V, Lorenzini G (2007) Metabolic changes in white clover clones exposed to ozone. Environ Exp Bot 60:11–19

    Article  CAS  Google Scholar 

  • Franzaring J, Hrenn H, Schumm C, Klumpp A, Fangmeier A (2006) Environmental monitoring of fluoride emissions using precipitation, dust, plant and soil samples. Environ Poll 144:158–165

    Article  CAS  Google Scholar 

  • Freer-Smith PH, Hollway S, Goodman A (1997) The uptake of particulates by an urban woodland: site description and particulate composition. Environ Poll 95:27–35

    Article  CAS  Google Scholar 

  • Fuhrer J, Booker F (2003) Ecological issues related to ozone: agricultural issues. Environ Int 29:141–154

    Article  CAS  PubMed  Google Scholar 

  • Fuhrer J, Val Martin M, Mills G, Heald CL, Harmens H, Hayes F, Sharps K, Bender J, Ashmore MR (2016) Current and future ozone risks to global terrestrial biodiversity and ecosystem processes. Ecol Evol 6:8785–8799

    Article  PubMed  PubMed Central  Google Scholar 

  • Furr AK, Parkinson TF, Helforn CL, Reid JT, Haschek WM, Gutenmann WH, Bache CA, St. John LE Jr, Lisk DJ (1978) Elemental content of tissues and excreta of lambs, goats and kids fed white sweet clover growing on fly ash. J Agri Food Chem 26:847–851

    Article  CAS  Google Scholar 

  • Gasic B, MacLeod M, Scheringer M, Hungerbuhler K (2010) Assessing the impact of weather events at mid latitudes on the atmospheric transport of chemical pollutants using a 2-dimentional multimedia meteorological model. Atmos Environ 44:4489–4496

    Article  CAS  Google Scholar 

  • Getnet Z, Husen A, Fetene M, Yemata G (2015) Growth, water status, physiological, biochemical and yield response of stay green sorghum {Sorghum bicolor (L.) Moench} varieties-a field trial under drought-prone area in Amhara regional state, Ethiopia. J Agron 14:188–202

    Article  CAS  Google Scholar 

  • Ghosh A, Pandey AK, Agrawal M, Agrawal SB (2020) Assessment of growth, physiological, and yield attributes of wheat cultivar HD 2967 under elevated ozone exposure adopting timely and delayed sowing conditions. Environ Sci Poll Res Int. https://doi.org/10.1007/s11356-020-08325-y

  • Ghouse AKM, Khan FA, Khair S, Usmani NR, Sulaiman IM (1985) Anatomical responses of Chenopodium album to air pollution caused by coal burning. Acta Bot Ind 13:287–288

    Google Scholar 

  • Ghouse AKM, Ahmad Z, Saquib M, Khan S (1986) Air pollution and wood formation in Mangifera indica Linn. Ind J Appl Pure Biol 1:37–39

    Google Scholar 

  • Ghouse AKM, Mahmooduzzafar, Iqbal M, Dastgiri P (1989) Effect of coal-smoke pollution on the stem anatomy of Cajanus cajan L. Mill. Ind J App Pure Biol 4:147–149

    Google Scholar 

  • Grantz DA, Farrar JF (2000) Ozone inhibits phloem loading from a transport pool: compartmental efflux analysis in Pima cotton. Aust J Plant Physiol 27:859–868

    CAS  Google Scholar 

  • Gupta MC, Ghouse AKM (1987) The effect of coal-smoke pollutants on growth yield and leaf epidermis features of Abelmoschus esculentus Moench. Environ Poll 43:263–270

    Article  CAS  Google Scholar 

  • Hamid N, Jawaid F (2009) Effect of short-term exposure of two different concentrations of Sulphur dioxide and nitrogen dioxide mixture on some biochemical parameter of soybean (Glycine max (L.) Merr.). Pak J Bot 41:2223–2228

    CAS  Google Scholar 

  • Hara H, Yabuuchi K, Higashida M, Ogawa M (1998) Determination of free and total fluoride in rain water using a continuous-flow system equipped with a fluoride ion-selective electrode detector. Anal Chimica Acta 364:117–123

    Article  CAS  Google Scholar 

  • Hassan IA, Haiba NS, Badr RH, Basahi JM, Almeelbi T, Ismail IM, Taia WK (2017) Effects of ambient ozone on reactive oxygen species and antioxidant metabolites in leaves of pea (Pisum sativum L.) plants. Pak J Bot 49:47–55

    CAS  Google Scholar 

  • He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, Van Nostrand JD, Hobbie SE, Reich PB, Zhou J (2010) Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecol Lett 13:564–575

    Google Scholar 

  • He Z, Xiong J, Kent AD, Deng Y, Xue K, Wang G, Wu L, Van Nostrand JD, Zhou J (2014) Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem. ISME J 8:714–726

    Google Scholar 

  • Heisler GM, Grant RH, Grimmond S, Souch C (1995) Urban forests–cooling our communities? In: Inside Urban Ecosystems, Proc. 7th Nat. Urban Forest Conf., American Forests, Washington, DC, pp 31–34

    Google Scholar 

  • Husen A (1997) Impact of air pollution on the growth and development of Datura innoxia Mill. M.Sc. Dissertation, Jamia Hamdard, New Delhi, India

    Google Scholar 

  • Husen A (2010) Growth characteristics, physiological and metabolic responses of teak (Tectona grandis Linn. f.) clones differing in rejuvenation capacity subjected to drought stress. Silva Gene 59:124–136

    Article  Google Scholar 

  • Husen A, Iqbal M (2004) Growth performance of Datura innoxia Mill. under the stress of coal-smoke pollution. Ann For 12:182–190

    Google Scholar 

  • Husen A, Ali ST, Mahmooduzzafar, Iqbal M (1999) Structural, functional and biochemical responses of Datura innoxia Mill. to coal-smoke pollution. Proc Acad Environ Biol 8:61–72

    Google Scholar 

  • Husen A, Iqbal M, Aref MI (2014) Growth, water status and leaf characteristics of Brassica carinata under drought stress and rehydration conditions. Brazil J Bot 37:217–227

    Article  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2017) Plant growth and foliar characteristics of faba bean (Vicia faba L.) as affected by indole-acetic acid under water-sufficient and water-deficient conditions. J Environ Biol 38:179–186

    Google Scholar 

  • Husen A, Iqbal M, Sohrab SS, Ansari MKA (2018) Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agri Food Security 7:44

    Article  Google Scholar 

  • Husen A, Iqbal M, Khanum N, Aref IM, Sohrab SS, Meshresa G (2019) Modulation of salt-stress tolerance of Niger (Guizotia abyssinica), an oilseed plant, by application of salicylic acid. J Environ Biol 40:94–104

    Article  Google Scholar 

  • Hussein M, Embiale A, Husen A, Aref IM, Iqbal M (2017) Salinity-induced modulation of plant growth and photosynthetic parameters in faba bean (Vicia faba) cultivars. Pak J Bot 49:867–877

    CAS  Google Scholar 

  • Iqbal M, Ahmad Z, Kabeer I, Mahmooduzzafar, Kaleemullah (1986) Stem anatomy of Datura inoxia Mill. in relation to coal-smoke pollution. J Sci Res 8:103–105

    Google Scholar 

  • Iqbal M, Mahmooduzzafar, Ghouse AKM (1987a) Impact of air pollution on the anatomy of Cassia occidentalis L. and Cassia tora L. Ind J App Pure Biol 2:23–26

    Google Scholar 

  • Iqbal M, Mahmooduzzafar, Kabeer I, Kaleemullah, Ahmad Z (1987b) The effect of air pollution on the stem anatomy of Lantana camara L. J Sci Res 9:121–122

    Google Scholar 

  • Iqbal M, Srivastava PS, Siddiqi TO (2000) Anthropogenic stresses in the environment and their consequences. In: Iqbal M, Srivastava PS, Siddiqi TO (eds) Environmental hazards: plants and people. CBS Publishers, New Delhi, pp 1–37

    Google Scholar 

  • Iqbal M, Mahmooduzzafar, Nighat F, Khan PR (2010a) Photosynthetic, metabolic and growth responses of Triumfetta rhomboidea to coal-smoke pollution at different stages of plant ontogeny. J Plant Inter 5:11–19

    CAS  Google Scholar 

  • Iqbal M, Jura-Morawiec J, WŁoch W, Mahmooduzzafar (2010b) Foliar characteristics, cambial activity and wood formation in Azadirachta indica A. Juss. as affected by coal–smoke pollution. Flora-Morphol Distrib Funct Ecol Plants 205:61–71

    Article  Google Scholar 

  • Iqbal M, Ahmad A, Ansari MKA, Qureshi MI, Aref IM, Khan PR, Hegazy SS, El-Atta H, Husen A, Hakeem KR (2015) Improving the phytoextraction capacity of plants to scavenge metal(loid)-contaminated sites. Environ Rev 23:44–65

    Article  CAS  Google Scholar 

  • Ishii S, Marshall FM, Bell JNB (2004) Physiological and morphological responses of locally grown Malaysian rice cultivars (Oryza sativa L.) to different ozone concentrations. Water Air Soil Poll 155:205–221

    Article  CAS  Google Scholar 

  • Jacobson JS, Hill AC (1970) Recognition of air pollution injury to vegetation. A pictorial atlas. Air Pollut Cont Assoc Pittsburg, USA

    Google Scholar 

  • Jean-Pierre G (2020) What is the impact of air pollutants on vegetation? Encyclopaedia of the Environment. https://www.encyclopedie-environnement.org/en/life/impact-air-pollutants-on-vegetation/. Accessed April 4, 2020

  • Jha SK, Mishra VK, Sharma DK, Damodaran T (2011) Fluoride in the environment and its metabolism in humans. Rev Environ Contam Toxicol 211:121–142

    CAS  PubMed  Google Scholar 

  • Jolivet Y, Bagard M, Cabané M, Vaultier M-N, Gandin A, Afif D, Dizengremel P, Le Thiec D (2016) Deciphering the ozone-induced changes in cellular processes: a prerequisite for ozone risk assessment at the tree and forest levels. Ann For Sci 73:923–943

    Article  Google Scholar 

  • Joshi N, Chauhan A, Joshi PC (2009) Impact of industrial air pollutants on some biochemical parameters and yield in wheat and mustard plants. Environmentalist 29:398–404

    Article  Google Scholar 

  • Karmakar D, Padhy PK (2019) Metals uptake from particulate matter through foliar transfer and their impact on antioxidant enzymes activity of S. robusta in a Tropical Forest, West Bengal, India. Arch Environ Contam Toxicol 76:605–616

    Article  CAS  PubMed  Google Scholar 

  • Karolewski P, Siepak J, Gramowska H (2000) Response of Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and Douglas fir (Pseudotsuga menziesii) needles to environment pollution with fluorine compounds. Dendrobiology 45:41–46

    CAS  Google Scholar 

  • Kellomäki S, Wang KY (1997) Effect of elevated O3 and CO2 on chlorophyll fluorescence and gas exchange in Scots pine during the third growing season. Environ Poll 97:17–27

    Article  Google Scholar 

  • Khalid N, Hussain M, Young HS, Boyce B, Aqeel M, Noman A (2018) Effects of road proximity on heavy metal concentrations in soils and some common wild plants in Southern California. Environ Sci Pollut Res 25:35257–35265

    Article  CAS  Google Scholar 

  • Khalid N, Masood A, Noman A, Aqeel M, Qasim M (2019) Study of the responses of two biomonitor plant species (Datura alba & Ricinus communis) to roadside air pollution. Chemosphere 235:832–841

    Article  CAS  PubMed  Google Scholar 

  • Khan MR, Khan MW (1996) The effect of fly ash on plant growth and yield of tomato. Environ Poll 92:105–111

    Article  CAS  Google Scholar 

  • Khan FA, Usmani NR (1988) Effect of Sulphur dioxide on chlorophyll in mustard leaf. J Ind Bot Soc 67:285–288

    Google Scholar 

  • Klumpp A, Domingos M, Klumpp G (1996) Assessment of the vegetation risk by fluoride emissions from fertilizer industries at Cubatao, Brazil. Sci Total Environ 192:219–228

    Article  CAS  Google Scholar 

  • Koblar A, Tavcar G, Ponikvar-Svet M (2011) Effects of airborne fluoride on soil and vegetation. J Fluor Chem 132:755–759

    Article  CAS  Google Scholar 

  • Kondo N, Akiyama Y, Fujiwara, Sugahara K (1980) Sulphite-oxidising activities in plants. Studies on the effects of air pollutants on plants and mechanism of Phytotoxicity. Res Rep Nat Inst Environ Stud 11:137–150

    CAS  Google Scholar 

  • Kull O, Sober A, Coleman MD, Diclson RE, Isebrands JG, Gagnon Z, Karnosky DF (1996) Photosynthetic responses of aspen clones to simultaneous exposures of ozone and CO2. Can J For Res 26:639–648

    Article  CAS  Google Scholar 

  • Lake JA, Wade RN (2009) Plant-pathological interactions and elevated CO2: morphological changes in favour of pathogens. J Exp Bot 60:3123–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau JA, Tiffin P (2009) Elevated carbon dioxide concentrations indirectly affect fitness by altering plant tolerance to herbivory. Oecologica 161:401–410

    Article  Google Scholar 

  • Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006) Photosynthesis, productivity and yield of maize are not affected by open–air elevation of CO2 concentration in the absence of drought. Plant Physiol 140:779–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitao L, Delacôte E, Dizengremel P, Thiec DL, Biolley J-P (2007) Assessment of the impact of increasing concentrations of ozone on photosynthetic components of maize (Zea mays L.), a C4 plant. Environ Poll 146:5–8

    Article  CAS  Google Scholar 

  • Li P, Feng Z, Calatayud V, Yuan X, Xu Y, Paoletti E (2017) A meta analysis on growth, physiological, and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types. Plant Cell Environ 40:2369–2380

    Article  CAS  PubMed  Google Scholar 

  • Liu XF, Hou F, Li GK, Sang N (2015) Effects of nitrogen dioxide and its acid mist on reactive oxygen species production and antioxidant enzyme activity in Arabidopsis plants. J Environ Sci 34:93–99

    Article  CAS  Google Scholar 

  • Malhotra SS, Khan AA (1984) Biochemical and physiological impact of major pollutants. In: Treshow M (ed) Air pollution and plant life. Wiley, Chichester, pp 113–157

    Google Scholar 

  • Mansfield TA, Atkinson CJ (1990) Stomatal behaviour in water stress plant. In: Alscher R (ed) Stress responses in plants: adaptation and acclimation mechanism. Wiley-Liss Inc, New York, pp 241–264

    Google Scholar 

  • Mansfield TA, Whitmore ME, Law RM (1982) Effects of nitrogen oxides on plants: two case studies. Stud Environ Sci 21:511–520

    Article  CAS  Google Scholar 

  • Marais EA, Jacob DJ, Choi S, Joiner J, Belmonte-Rivas M, Cohen RC, Ryerson TB, Weinheimer AJ, Volz-Thomas A (2017) Nitrogen oxides in the global upper troposphere interpreted with cloud-sliced NO2 from the ozone monitoring instrument. EGU Gen Assem 19:12156

    Google Scholar 

  • Mcdonald AG, Bealey WJ, Fowler D, Dragositsa U, Skibaa U, Smitha RI, Donovanb RG, Brettc HE, Hewittd CN, Nemitz E (2007) Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmos Environ 41:8455–8467

    Article  CAS  Google Scholar 

  • Meusel I, Neinhuis C, Markstadter C, Barthlott W (1999) Ultra structure, chemical composition, and recrystallization of epicuticular waxes: transversely ridged rodlets. Can J Bot 77:706–720

    Google Scholar 

  • Middleton JT, Darley EF, Brewer RF (1958) Damage to vegetation from polluted atmospheres. J Air Pollut Control Assoc 8:9–15

    Article  CAS  Google Scholar 

  • Mills G, Sharps K, Simpson D, Pleijel H, Broberg M, Uddling J, Jaramillo F, Davies WJ, Dentener F, Van den Berg M, Agrawal M, Agrawal SB, Ainsworth EA, Büker P, Emberson L, Feng Z, Harmens H, Hayes F, Kobayashi K, Paoletti E, Van Dingenen R (2018) Ozone pollution will compromise efforts to increase global wheat production. Glob Chang Biol 24:3560–3574

    Article  PubMed  Google Scholar 

  • Morgan PB, Ainsworth EA, Long SP (2003) How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ 26:1317–1328

    Article  CAS  Google Scholar 

  • Morison JIL, Gifford RM (1983) Stomatal sensitivity to CO2 and humidity. Plant Physiol 71:789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Chakraborty A, Mondal S, Saha S, Haque A, Paul S (2019) Assessment of common plant parameters as biomarkers of air pollution. Environ Monit Assess 191:400

    Article  PubMed  Google Scholar 

  • Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey ADB, Bloom AJ, Carlisle E, Dietterich LH, Fitzgerald G, Hasegawa T, Holbrook NM, Nelson RL, Ottman MJ, Raboy V, Sakai H, Sartor KA, Schwartz J, Seneweera S, Tausz M, Usui Y (2014) Increasing CO2 threatens human nutrition. Nature 510:139–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakaji T, Fukami M, Dokiya Y, Izuta T (2001) Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees 15:453–461

    Article  CAS  Google Scholar 

  • Nandi PK, Agrawal M, Agrawal SB, Rao DN (1990) Physiological responses of Vicia faba plants to sulfur dioxide. Ecotoxicol Environ Saf 19:64–71

    Article  CAS  PubMed  Google Scholar 

  • NASA (2018) NASA Ozone watch. https://ozonewatch.gsfc.nasa.gov/facts/SH.html. Accessed April 17, 2020

  • NASA (2020) Airborne nitrogen dioxide plummets over China. https://earthobservatory.nasa.gov/images/146362/airborne-nitrogen-dioxide-plummets-over-china. Accessed April 4, 2020

  • Nedunchezhiyan V, Velusamy M, Subburamu K (2020) Seed priming to mitigate the impact of elevated carbon dioxide associated temperature stress on germination in rice (Oryza sativa L.). Arch Agro Soil Sci 66:83–95

    Article  CAS  Google Scholar 

  • Nighat F, Mahmooduzzafar, Iqbal M (1999) Foliar responses of Peristrophe bicalyculata to coal smoke pollution. J Plant Biol 42:205–212

    Article  Google Scholar 

  • Nighat F, Mahmooduzzafar, Iqbal M (2000) Stomatal conductance, photosynthetic rate, and pigment content in Ruellia tuberosa leaves as affected by coal-smoke pollution. Biologia Plant 43:263–267

    Article  CAS  Google Scholar 

  • Nighat F, Mahmooduzzafar, Iqbal M (2008) Coal-smoke pollution modifies physio-chemical characteristics of tissues during the ontogeny of Peristrophe bicalyculata. Biologia 63:1128–1134

    Article  Google Scholar 

  • Nivane SY, Chaudhari PR, Gajghate DG, Tarar JL (2001) Foliar biochemical features of plants as indicators of air pollution. Bull Environ Cont Toxicol 67:133–140

    Article  Google Scholar 

  • NOAA (2008) Science: ozone basics. https://www.ozonelayer.noaa.gov/science/basics.htm. Accessed April 17, 2020

  • Norby RJ, Weerasuriya Y, Hanson PJ (1989) Induction of nitrate reductase activity in red spruce needles by NO2 and HNO3 vapor. Can J For Res 19:889–896

    Article  CAS  Google Scholar 

  • Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 – do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280

    Article  Google Scholar 

  • NPA (2018) Where does air pollution come from? National Park Service, US Department of Interior. https://www.nps.gov/subjects/air/sources.htm. Accessed April 4, 2020

  • Oliveira dos Anjos TB, Louback E, Azevedo AA, Campos da Silva L (2018) Sensibility of Spondias purpurea L. (Anacardiaceae) exposed to fluoride simulated fog. Ecol Indic 90:154–163

    Article  CAS  Google Scholar 

  • Ostrolucka MG (1989) Differentiation of male reproductive organs and oak fertility in urban environment. Biol Bratis 44:793–799

    Google Scholar 

  • Ottman MJ, Kimball BA, Pinter PJ, Wall GW, Vanderlip RL, Leavitt SW, LaMorte RL, Matthias AD, Brooks TJ (2001) Elevated CO2 increases sorghum biomass under drought conditions. New Phytol 150:261–273

    Article  Google Scholar 

  • Palacios CJ, Grandis A, Carvalho VJ, Salatino A, Buckeridge MS (2019) Isolated and combined effects of elevated CO2 and high temperature on the whole-plant biomass and the chemical composition of soybean seeds. Food Chem 275:610–617

    Article  CAS  PubMed  Google Scholar 

  • Pandey VC, Singh N (2010) Impact of fly ash incorporation in soil systems. Agric Ecosyst Environ 136:16–27

    Article  Google Scholar 

  • Parui S, Mondal AK, Mandal S (2001) DNA, peroxidase profile, and biochemical composition changes during the treatment in vitro of pollen of Argemone mexicana L. with SO2. Grana 40:154–158

    Article  Google Scholar 

  • Pearcy RW, Ehleringer J (1984) Comparative ecophysiology of C3 and C4 plants. Plant Cell Environ 7:1–13

    Article  CAS  Google Scholar 

  • Peng J, Shang B, Xu Y, Feng Z, Pleijel H, Calatayud V (2019) Ozone exposure- and flux-yield response relationships for maize. Environ Poll 252(Pt A):1–7

    Article  CAS  Google Scholar 

  • Peng J, Shang B, Xu Y, Feng Z, Calatayud V (2020a) Effects of ozone on maize (Zea mays L.) photosynthetic physiology, biomass and yield components based on exposure- and flux-response relationships. Environ Poll 256:113466

    Article  CAS  Google Scholar 

  • Peng Z, Deng W, Hong Y, Chen Y (2020b) An experimental work to investigate the capabilities of plants to remove particulate matters in an enclosed greenhouse. Air Qual Atmos Health 13:477–488

    Article  CAS  Google Scholar 

  • Pozgaj A, Iqbal M, Kucera LJ (1996) Development, structure and properties of wood from trees affected by air pollution. In: Yunus M, Iqbal M (eds) Plant response to air pollution. Wiley, Chichester, pp 395–424

    Google Scholar 

  • Prajapati SK, Tripathi BD (2008) Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. J Environ Qual 37:865–870

    Article  CAS  PubMed  Google Scholar 

  • Prusty BAK, Mishra PC, Azeez PA (2005) Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotoxicol Environ Saf 60:228–235

    Article  CAS  PubMed  Google Scholar 

  • Qadir SU, Raja V, Siddiqui WA (2016) Morphological and biochemical changes in Azadirachta indica from coal combustion fly ash dumping site from a thermal power plant in Delhi, India. Ecotoxicol Environ Saf 129:320–328

    Article  CAS  PubMed  Google Scholar 

  • Qadir SU, Raja V, Siddiqui WA, Mahmooduzzafar, Abd Allah EF, Hashem A, Alam P, Ahmad P (2019) Fly-ash pollution modulates growth, biochemical attributes, antioxidant activity and gene expression in Pithecellobium Dulce (Roxb) Benth. Plants (Basel) 8:528

    Article  CAS  PubMed Central  Google Scholar 

  • Rahmat M, Maulina W, Rustami E, Azis M, Budiarti DR, Seminar KB, Yuwono AS, Alatas H (2013) Performance in real condition of photonic crystal sensor based NO2 gas monitoring system. Atmos Environ 79:480–485

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M (2012) Impact of tropospheric ozone on crop plants. Proc Natl Acad Sci India Sect B Biol Sci 82:241–257

    Article  CAS  Google Scholar 

  • Rai A, Kulshreshtha K, Srivastava PK, Mohanty CS (2010) Leaf surface structure alterations due to particulate pollution in some common plants. Environmentalist 30:18–23

    Article  Google Scholar 

  • Rao DN, LeBlanc F (1966) Effect of SO2 on the lichen alga with special reference to chlorophyll. Bryologist 69:69–75

    Article  Google Scholar 

  • Rezanejad F (2009) Air pollution effects on structure, proteins and flavonoids in pollen grains of Thuja orientalis L. (Cupressaceae). Grana 48:205–213

    Article  Google Scholar 

  • Rodrigues AA, Vasconcelos-Filho SC, Mendes GC, Rehn LS, Rodrigues DA, Rodrigues CL, Müller C (2017) Fluoride in simulated rain affects the morphoanatomy and physiology of Eugenia dysenterica (Mart.) DC. Ecol Indic 82:189–195

    Article  CAS  Google Scholar 

  • Saether O, Reimann C, Hilmo BO, Taushani E (1995) Chemical composition of hard- and softrock groundwaters from Central Norway with special consideration of fluoride and Norwegian drinking water limits. Environ Geol 26:147–156

    Article  CAS  Google Scholar 

  • Sarkar A, Agrawal SB (2010) Identification of ozone stress in Indian rice through foliar injury and differential protein profile. Environ Monit Assess 161:283–302

    Article  CAS  Google Scholar 

  • Scheringer M (2009) Long-range transport of organic chemicals in the environment. Environ Toxicol Chem 28:677–690

    Article  CAS  PubMed  Google Scholar 

  • Shaheen SM, Hooda PS, Tsadilas CD (2014) Opportunities and challenges in the use of coal fly ash for soil improvements – a review. J Environ Manag 145:249–267

    Article  CAS  Google Scholar 

  • Shaibu-Imodagbe EM (1991) The impact of some specific air pollutants on agricultural productivity. Environmentalist 11:33–38

    Article  Google Scholar 

  • Shang B, Xu Y, Dai L, Yuan X, Feng Z (2019) Elevated ozone reduced leaf nitrogen allocation to photosynthesis in poplar. Sci Total Environ 657:169–178

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Kaur R (2018) Insights into fluoride-induced oxidative stress and antioxidant defences in plants. Acta Physiol Plant 40:181

    Article  CAS  Google Scholar 

  • Sharma R, Kaur R (2019) Fluoride toxicity triggered oxidative stress and the activation of antioxidative defence responses in Spirodela polyrhiza L. Schleiden J Plant Interac 14:440–452

    Article  CAS  Google Scholar 

  • Sharma SC, Srivastava R, Roy RK (2005) Role of bougainvilleas in mitigation of environmental pollution. J Environ Sci Eng 47:131–134

    CAS  PubMed  Google Scholar 

  • Sheng Q, Zhu Z (2019) Effects of nitrogen dioxide on biochemical responses in 41 garden plants. Plants (Basel) 8:E45

    Article  CAS  Google Scholar 

  • Shimazaki KI, Sakaki T, Konde D, Sugahara K (1980) Active O2 participation in chlorophyll destruction and lipid peroxidation in SO2-fumigated leaves of spinach. Plant Cell Physiol 21:1193–1204

    Article  CAS  Google Scholar 

  • Sij JW, Swanson CA (1974) Short-term kinetic studies on the inhibition of photosynthesis by sulfur dioxide. J Environ Qual 3:103–107

    Article  CAS  Google Scholar 

  • Singh N, Singh SN, Srivastava K, Yunus M, Ahmad KJ, Sharma SC, Sharga AN (1990a) Relative sensitivity and tolerance of some gladiolus cultivars to Sulphur dioxide. Ann Bot 65:41–44

    Article  CAS  Google Scholar 

  • Singh SN, Yunus M, Singh N (1990b) Effect of sodium metabisulphite on chlorophyll, protein and nitrate reductase activity of tomato leaves. Sci Total Environ 81:269–274

    Article  Google Scholar 

  • Singh AK, Singh RB, Sharma AK, Gouraha R, Saggar S (1997) Responses of fly ash on growth of Albizia procera in cool mine spoil and skeletal soil. Environ Ecol 15:585–591

    Google Scholar 

  • Smith WH (1990) Air pollution and forests. Springer, New York, p 618

    Book  Google Scholar 

  • Steffens JT, Wang YJ, Zhang KM (2012) Exploration of effects of a vegetation barrier on particle size distributions in a near-road environment. Atmos Environ 50:120–128

    Article  CAS  Google Scholar 

  • Stulen I, Perez-Soba M, De Kok LJ, Van der Eerden L (1998) Impact of gaseous nitrogen deposition on plant functioning. New Phytol 139:61–70

    Article  CAS  Google Scholar 

  • Takahashi M, Morikawa H (2014) Nitrogen dioxide is a positive regulator of plant growth. Plant Signal Behav 9:e28033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi M, Nakagawa M, Sakamoto A, Ohsumi C, Matsubara T, Morikawa H (2005) Atmospheric nitrogen dioxide gas is a plant vitalization signal to increase plant size and the contents of cell constituents. New Phytol 168:149–154

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Furuhashi T, Ishikawa N, Horiguchi G, Sakamoto A, Tsukaya H, Morikawa H (2014) Nitrogen dioxide regulates organ growth by controlling cell proliferation and enlargement in Arabidopsis. New Phytol 201:1304–1315

    Article  CAS  PubMed  Google Scholar 

  • Teklemariam TA, Sparks JP (2006) Leaf fluxes of NO and NO2 in four herbaceous plant species: the role of ascorbic acid. Atmos Environ 40:2235–2244

    Article  CAS  Google Scholar 

  • Thomas JG, Richard BS (2010) Cardio vascular health and particulate vehicular emissions: a critical evaluation of the evidence. Air Qual Atmos Health 3:3–27

    Article  CAS  Google Scholar 

  • Thompson MA (1981) Tree rings and air pollution: a case study of Pinus monophylla growing in east-central Nevada. Environ Poll 26A:251–266

    Article  Google Scholar 

  • Thompson M, Gamage D, Ratnasekera D, Perera A, Martin A, Seneweera S (2019) Effect of elevated carbon dioxide on plant biomass and grain protein concentration differs across bread, durum and synthetic hexaploid wheat genotypes. J Cereal Sci 87:103–110

    Article  CAS  Google Scholar 

  • Tiwari S, Agrawal M (2011) Assessment of the variability in response of radish and brinjal at biochemical and physiological levels under similar ozone exposure conditions. Environ Monit Assess 175:443–454

    Article  CAS  PubMed  Google Scholar 

  • Tong Z, Baldauf RW, Isakov V, Deshmukh P, Max Zhang K (2016) Roadside vegetation barrier designs to mitigate near-road air pollution impacts. Sci Total Environ 541:920–927

    Article  CAS  PubMed  Google Scholar 

  • Ulrich MM, Alink GM, Kumarathasan P, Vincent R, Boere AJ, Cassee FR (2012) Health effects and time course of particulate matter on the cardiopulmonary system in rats with lung inflammation. J Toxicol Environ Health A65:1571–1595

    Google Scholar 

  • van der Kooi CJ, Reich M, Löw M, De Kok LJ, Tausz M (2016) Growth and yield stimulation under elevated CO2 and drought: a meta-analysis on crops. Environ Exp Bot 122:150–157

    Article  CAS  Google Scholar 

  • Vighi IL, Benitez LC, Amaral MN, Moraes GP, Auler PA, Rodrigues GS, Deuner S, Mala LC, Braga EJB (2017) Functional characterization of the antioxidant enzymes in rice plants exposed to salinity stress. Biol Plant 61:540–550

    Article  CAS  Google Scholar 

  • Walna B, Kurzyca I, Bednorz E, Kolendowicz L (2013) Fluoride pollution of atmospheric precipitation and its relationship with air circulation and weather patterns (Wielkopolski National Park, Poland). Environ Monit Assess 185:5497–5514

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zhang H (2018) Accumulation of heavy metals in roadside soil in urban area and the related impacting factors. Int J Environ Res Public Health 15:1064

    Article  PubMed Central  CAS  Google Scholar 

  • Wei X, Lyu S, Yu Y, Wang Z, Liu H, Pan D, Chen J (2017) Phylloremediation of air pollutants: exploiting the potential of plant leaves and leaf-associated microbes. Front Plant Sci 8:1318

    Article  PubMed  PubMed Central  Google Scholar 

  • WHO (2016a) Ambient air pollution: a global assessment of exposure and burden of disease. https://www.who.int/phe/publications/air-pollution-global-assessment/en/. Accessed April 4, 2020

  • WHO (2016b) Burden of disease from the joint effects of household and ambient air pollution for 2016. https://www.who.int/airpollution/data/AP_joint_effect_BoD_results_May2018.pdf?ua=1. Accessed April 4, 2020

  • Wong MH, Wong JHC (1989) Germination and seedling growth of vegetation crops in fly ash amended soils. Agri Ecol Environ 26:23–35

    Article  Google Scholar 

  • Yadav A, Bhatia A, Yadav S, Kumar V, Singh B (2019) The effects of elevated CO2 and elevated O3 exposure on plant growth, yield and quality of grains of two wheat cultivars grown in North India. Heliyon 5:e02317

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanchenko NI, Baranov AN (2010) Parameters of the distribution of fluorine, sulfur, and sodium in the Baikal Region with the production of primary aluminum. Rus J Non-Ferrous Met 51:144–149

    Article  Google Scholar 

  • Yao ZT, Ji XS, Sarker PK, Tang JH, Ge LQ, Xia MS, Xi YQ (2015) A comprehensive review on the applications of coal fly ash. Earth-Sci Rev 141:105–121

    Article  Google Scholar 

  • Yendrek CR, Erice G, Montes CM, Tomaz T, Sorgini CA, Brown PJ, McIntyre LM, Leakey ADB, Ainsworth EA (2017) Elevated ozone reduces photosynthetic carbon gain by accelerating leaf senescence of inbred and hybrid maize in a genotype-specific manner. Plant Cell Environ 40:3088–3100

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz O, Kahraman K, Ozgur R, Uzilday B, Turkan I, Ozturk L (2017) Growth performance and antioxidative response in bread and durum wheat plants grown with varied potassium treatments under ambient and elevated carbon dioxide. Environ Exp Bot 137:26–35

    Article  CAS  Google Scholar 

  • Younis U, Bokhari TZ, Malik SA, Ahmad S, Raja R (2013) Variations in leaf dust accumulation, foliage and pigment attributes in fruiting plant species exposed to particulate pollution from Multan. Int J Agric Sci Res 3:1–12

    Google Scholar 

  • Yu W, Wang Y, Wang Y, Li B, Liu Y, Liu X (2018) Application of a coupled model of photosynthesis and stomatal conductance for estimating plant physiological response to pollution by fine particulate matter (PM2.5). Environ Sci Pollut Res 25:19826–19835

    Article  CAS  Google Scholar 

  • Yunus M, Iqbal M (eds) (1996) Plant response to air pollution. Wiley, Chichester

    Google Scholar 

  • Zavala JA, Casteel CL, DeLucia EH, Berenbaum MR (2008) Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. PNAS USA 105:5129–5133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziska LH, Bunce JA (1997) Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds. Photosyn Res 54:199–208

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author is thankful to publishers for permission to adapt figures in this book chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Husen, A. (2021). Morpho-anatomical, Physiological, Biochemical and Molecular Responses of Plants to Air Pollution. In: Husen, A. (eds) Harsh Environment and Plant Resilience. Springer, Cham. https://doi.org/10.1007/978-3-030-65912-7_9

Download citation

Publish with us

Policies and ethics