Skip to main content

Interactions of Clay and Clay Minerals with the Human Health

  • Chapter
  • First Online:
Minerals latu sensu and Human Health

Abstract

This chapter is initiated with the record and discussion of the diverse uses of healing clay, both for internal applications involving geophagy and edible clay and for external or topical applications involving the practices called mud therapy and pelotherapy. The etiology and health consequence (benefits, risks, and mechanisms of action) of edible clay are discussed. Distinction is made between geophagy and pica. Distinction is made too between mud and peloid materials, characterized in terms of diversity and typology. One type of peloid, the designed and engineered peloid, is enhanced, since its simple composition, manipulation, and modification allow a better understanding of its medical or cosmetic performance. Peloid’s function, benefits, risks, and mechanisms of action and edible clay mechanisms of action are reported and discussed. Databases of publications on medical and cosmetic pelotherapy are reported. The role of clay minerals in biocomposites, and in controlled drug delivery systems for pharmaceutical and medical applications, the case of halloysite nanotubes, is discussed. The bactericidal activity of some minerals is reported and explained. The chapter ends identifying and discussing diseases whose etiology is attributed to clay such as podoconiosis, Mseleni joint’s disease, Kashin-Beck’s disease, and Keshan’s disease, as well as other adverse effects caused by clay and clay minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullayev E, Lvov Y (2016) Halloysite for controllable loading and release. Developments in clay science, vol 7. Elsevier, pp 554–605

    Google Scholar 

  • Abrahams PW (1997) Geophagy (soil consumption) and iron supplementation in Uganda. Tropical Med Int Health 2:617–623

    Article  Google Scholar 

  • Abrahams PW (2002) Soils: their implications to human health. Sci Total Environ 291:1–32

    Article  Google Scholar 

  • Abrahams PW (2005) Geophagy and the involuntary ingestion of soils. In: Selinus O, Alloway B, Centeno JA, Finkelman RB, Fuge R, Lindh U, Smedley P (eds) Essentials of medical geology. Elsevier Academic, pp 435–458

    Google Scholar 

  • Abrahams PW (2010) Chapter 23: Earth eaters: ancient and modern perspectives on human geophagy. In: Landa ER, Feller C (eds) Soil and culture. Springer, Dordrecht, pp 369–398

    Chapter  Google Scholar 

  • Abrahams PW (2012) Involuntary soil ingestion and geophagia: a source and sink of mineral nutrients and potentially harmful elements to consumers of earth materials. Appl Geochem 27:954–968

    Article  Google Scholar 

  • Abrahams PW (2013) Geophagy and the involuntary ingestion of soil. In: Selinus O, Alloway B, Centeno JA, Finkelman RB, Fuge R, Lindh U, Smedley P (eds) Essentials of medical geology: revised edition. Springer, Dordrecht, pp 433–454

    Chapter  Google Scholar 

  • Abrahams PW, Parsons JA (1996) Geophagy in the tropics: a literature review. Geogr J 162:63–72

    Article  Google Scholar 

  • Abrahams PW, Follansbee MH, Hunt A, Smith B, Wragg J (2006) Iron nutrition and possible lead toxicity: an appraisal of geophagy undertaken by pregnant women of UK Asian communities. Appl Geochem 21:98–108

    Article  Google Scholar 

  • Abrahams PW, Davies TC, Solomon AD, Trow AJ, Wragg J (2013) Human geophagia, calabash chalk and undongo: mineral element nutritional implications. PLoS One 8(1). https://doi.org/10.1371/journal.pone.0053304

  • Abu-Shakra M, Mayer A, Friger M, Harari M (2014) Dead Sea mud packs for chronic low back pain. Isr Med Assoc J 16:574–577

    Google Scholar 

  • Adusumilli S, Haydel SE (2016) In vitro antibacterial activity and in vivo efficacy of hydrated clays on Mycobacterium ulcerans growth. BMC Complement Altern Med 16(40):1–9. https://doi.org/10.1186/s12906-016-1020-5

    Article  Google Scholar 

  • Aguzzi C, Cerezo P, Viseras C, Caramella C (2006) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36:22–36

    Article  Google Scholar 

  • Aguzzi C, Sandri G, Cerezo P, Carazo E, Viseras C (2016) Health and medical applications of tubular clay minerals. Developments in Clay Science, vol 7, Chapter 26, 708–725, Elsevier Ltd

    Google Scholar 

  • Al-Ghazzewi FH, Tester RF (2014) Impact of prebiotics and probiotics on skin health. Benefic Microbes 5:99–107

    Article  Google Scholar 

  • Al-Rmalli SW, Jenkins RO, Watts MJ, Haris PI (2010) Risk of human exposure to arsenic and other toxic elements from geophagy: trace element analysis of baked clay using inductively coupled plasma mass spectrometry. Environ Health 9(79) http://www.ehjournal.net/content/9/1/79

  • Alzheimer’s Association (2015) Alzheimer’s disease: facts and figures. Alzheimers Dement 11(3):332–384

    Google Scholar 

  • Amin K, Riddle CC, Aires DJ, Achweiger ES (2007) Common and alternate oral antibiotic therapies for acne vulgaris: a review. J Drugs Dermatol 6(9):873–880

    Google Scholar 

  • An N, Zhou X, Tong D, Yu W (2015) Immobilization of enzymes on clay minerals for biocatalysts and biosensors. Appl Clay Sci 114:283–296

    Article  Google Scholar 

  • Andreoli C, Rascio N (1975) The algal flora in the thermal baths of Montegrotto Terme (Padua): its distribution over one-year period. Int Rev Ges Hydrobiol 60:857–871

    Google Scholar 

  • Antonelli M, Donelli D (2018) Int J Biometeorol, Springer. https://doi.org/10.1007/s00484-018-1599-y

  • Antonelli M, Donelli D, Fioravanti A (2018) Effects of balneotherapy and spa therapy on quality of life of patients with knee osteoarthritis: a systematic review and meta-analysis. Rheumatol Int 38(10):1807–1824

    Article  Google Scholar 

  • Araújo ARTS, Paiva T, Ribeiro MP, Coutinho P (2015) Chapter 11: Innovation in Thermalism: An example in Beira interior region of Portugal. In: Peris-Ortiz M, Álvarez-Garcia J (eds) Health and wellness tourism: emergence of a new market segment. Springer, pp 165–180

    Google Scholar 

  • Argenziano G, Delfino M, Russo N (2004) Mud and bath therapy in the acne cure. Clin Ter 155(4):121–125

    Google Scholar 

  • Arias CA, Murray BE (2009) Antibiotic-resistant bugs in the 21st century: a clinical super-challenge. New Engl J Med 360:439–443

    Article  Google Scholar 

  • Armijo F (1991) Propiedades térmicas de los peloides. Bol Soc Esp Hidrol Med 6(3):151–158

    Article  Google Scholar 

  • Armijo F (2015) Fases sólidas de los peloides: Propiedades térmicas y mecânicas. Balnea 10:143–162

    Google Scholar 

  • Armijo F, Armijo O (2006) Curva de enfriamiento de los peloides españoles. An Hidrol Med 1:97–110

    Google Scholar 

  • Armijo F, Carbajo JM, Fernandez-Toran MA, Corvillo I, Vazquez I, Carretero MI, Maraver F (2014) Thermal profile of three clays suitable to be used as solid components in the preparation of peloids. Appl Clay Sci 99:131–143

    Google Scholar 

  • Armijo F, Maraver F, Pozo M, Carretero MI, Armijo O, Fernández-Toran MA, Fernández-González MV, Corvillo I (2016) Thermal behaviour of clays and clay-water mixtures for pelotherapy. Appl Clay Sci 126:50–56

    Article  Google Scholar 

  • Arribas M, Meijide R, Mourelle ML (2010a) Evolución de la psoriasis tratada con peloides y água mineromedicinal de La Toja. In: Maraver F, Carretero MI (eds) Libro de Resúmenes del II Congreso Iberoamericano de Peloides. C.E.R.S-A, Madrid, p 75

    Google Scholar 

  • Arribas M, Meijide R, Mourelle ML, Gómez CP, Legido JL (2010b) Projecto de innovación para el desarrollo de un peloide termal para el balneario isla de la Toja. In: Maraver F, Carretero MI (eds) Libro de Resúmenes del II Congreso Iberoamericano de Peloides. C.E.R.S-A, Madrid, p 76

    Google Scholar 

  • Artymuk NV, Kira EF, Kondratieva TA (2010) Intravaginal gel prepared from Dead Sea peloid for treating luteal-phase defect. Int J Gynaecol Obstet 108(1):72–73

    Article  Google Scholar 

  • Aufreiter S, Hancock RG, Mahaney WC, Stamolic-Robb A, Sanmugadas K (1997) Geochemistry and mineralogy of soils eaten by humans. Int J Food Sci Nutr 48:293–305

    Article  Google Scholar 

  • Awad ME, López-Galindo A, Setti M, El-Rahmany MM, Viseras C (2017) Kaolinite in pharmaceuticals and biomedicine. Int J Pharm 533:34–48

    Article  Google Scholar 

  • Baby AR, Zague V, Maciel CPM, Salgado-Santos KY, Arêas EPG, Kaneko TM, Consiglieri VO, Velasco MVR (2004) Development of cosmetic mask formulations. Braz J Pharm Sci 40(1):159–161

    Google Scholar 

  • Bagnato G (2004) Clinical improvement and serum amino acid levels after mud-bath therapy. Int J Clin Pharmacol Res 24:39–47

    Google Scholar 

  • Bagnato G, De Filippis LG, Morgante S, Morgante ML, Farina G, Caliri A, Romano C, DÁvola G, Pinelli P, Calpona PR, Streva P, Resta ML, De Luca G, Di Giorgio R (2004) Clinical improvement and serum amino acid levels after mud-bath therapy. Int J Clin Pharmacol Res 24(2–3):39–47

    Google Scholar 

  • Balogh Z, Ordögh J, Gász A, Német L, Bender T (2005) Effectiveness of balneotherapy in chronic low back pain: a randomized single-blind controlled follow-up study. Forsch Komplementarmed Klass Naturheilkd 12(4):196–201. https://doi.org/10.1159/000086305

    Article  Google Scholar 

  • Banenzoue C, Signing P, Mbey JA, Njopwouo D (2014) Antacid power and their enhancements in some edible clays consumed by geophagia in Cameron. J Chem Pharm Res 6(10):668–676

    Google Scholar 

  • Barhoumi T, Bekri-Abbes I, Srasra E (2019) Physicochemical characteristics and suitability of curative pastes of Tunisian clay minerals and termal waters for use in pelotherapy. C R Chim 22(2–3):126–131

    Article  Google Scholar 

  • Barros M, Santos D, Pena Ferreira MR, Silva JBP, Amaral MH, Sousa Lobo JM, Gomes JHCA, Gomes CSF (2010) Estudos de pré-formulação de um pelóide anticelulitico com argila esmectítica da ilha do Porto Santo. In: Maraver F, Carretero MI (eds) Libro de Resúmenes del II Congreso Iberoamericano de Peloides. C.E.R.S-A, Madrid, pp 77–78

    Google Scholar 

  • Baschini MT, Pettinari GR, Vallés JM, Aguzzi C, Cerezo P, López-Galindo A, Setti M, Viseras C (2010) Suitability of natural Sulphur-rich muds from Copahue (Argentina) for use as semisolid health care products. Appl Clay Sci 49:205–212

    Article  Google Scholar 

  • Baschini MT, Piovano E, López-Galindo A, Dietrich D, Setti M (2014) Composición y propriedades de fangos (peloides), águas y sales procedentes de lagunas y lagos salinos usados com fines terapêuticos y cosméticos. In: Peloteraia: Aplicaciones médicas y cosméticas de fangos termales. Torres HA (coordenador), Fundación Bibilis, 145–154

    Google Scholar 

  • Baschini MT, Soria C, Pettinari G, Gamboa E, Sánchez M, Jalil ME (2018) Chapter 2: Fangos de Copahue: Una Vision desde la Ciencia. In: Soria CO, Vela ML, Jalil ME (eds) Copahue: La Ciencia, Lo Magico y El Arte de Curar. Repositorio del Libro, Universidad Nacional de Comahue, Argentine, pp 25–47. 170pp

    Google Scholar 

  • Bech J (1987) Les terres médicinales. Discurs per Reial Académia de Farmácia de Barcelona. Reial Académia de Farmácia de Barcelona-CIRIT (Generalitat de Catalunya), Barcelona

    Google Scholar 

  • Beck MA (2006) Selenium and viral infections. In: Hatfield DL, Berry MJ, Gladyshev VN (eds) Selenium. Springer, Boston

    Google Scholar 

  • Beck MA, Handy J, Levander OA (2004) Host nutriviral status: the neglected virulence factor. Trends Microbiol 12(9):417–423

    Article  Google Scholar 

  • Beer AM, Grozeva A, Sagorchev P, Lukanov J (2003a) Comparative study of the thermal properties of mud and peat solutions applied in clinical practices. Biomed Tech (Berl) 48:301–305

    Article  Google Scholar 

  • Beer AM, Junginger HE, Lukanov J, Sagorchev P (2003b) Evaluation of the permeation of peat substances through human skin in vitro. Int J Pharm 253:169–175

    Article  Google Scholar 

  • Beer AM, Fetaj S, Lange U (2013) Peloid therapy: An overview of the empirical status and evidence of mud therapy. Z Rheumatol (Apr 11)

    Google Scholar 

  • Behroozian S, Svensson SL, Davies J (2016) Kisameet clay exhibits potent antibacterial activity against the ESKAPE pathogens. Am Soc Microbiol, mBios 7(1):e01842–e01815

    Google Scholar 

  • Belkaide Y, Hand T (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141

    Article  Google Scholar 

  • Belkaide Y, Segre JA (2014) Dialogue between skin microbiota and immunity. Science 346:954–959

    Article  Google Scholar 

  • Bellometti S, Cecchettin M, Galzigna L (1997) Mud pack therapy in osteoarthrosis. Changes in serum levels of chondrocyte markers. Clin Chim Acta 268(1–2):101–106

    Article  Google Scholar 

  • Bellometti S, Poletto M, Gregotti C, Richelmi P, Bertè F (2000) Mud bath therapy influences nitric oxide, myeloperoxidase and glutathione peroxidase serum levels in arthritic patients. Int J Clin Pharmacol Res 20(3–4):69–80

    Google Scholar 

  • Bellometti S, Richelmi P, Tassoni T, Bertè F (2005) Production of matrix metalloproteinases and their inhibitors in osteoarthritic patients undergoing mud bath therapy. Int J Clin Pharmacol Res 25(2):77–94

    Google Scholar 

  • Bellometti S, Gallotti C, Pacileo G, Rota A, Tenconi MT (2007) Evaluation of outcomes in spa-treated osteoarthrosic patients. J Prev Med Hyg 48(1):1–4

    Google Scholar 

  • Bender T, Karagülle Z, Bálint G, Gutenbrunner C, Bálint P, Sukenik S (2005) Hydrotherapy, balneotherapy, and spa treatment in pain management. Rheumatol Int 25:220–224

    Article  Google Scholar 

  • Benedetti S, Pagliarani S, Benvenuti F, Marini D, Galli T, Oliva F, Lazzari P, Canestrari F (2007) Antioxidative effects of sulphurous water from Macerata Feltria thermal resort in patients with osteoarthritis. Prog Nutr 9(1):46–52

    Google Scholar 

  • Bignon J (1990) Health related effects of phyllosilicates. In: Bignon J (ed) NATO ASI series, vol G21. Springer, Berlin/Heidelberg

    Google Scholar 

  • Bolzinger MA, Briançon S, Pelletier J, Chevalier Y (2012) Penetration of drugs through skin, a complex rate-controlling membrane. Curr Opin Colloid Interface Sci 17(3):156–165

    Article  Google Scholar 

  • Bonglaisin JN, Mbofung CMF, Lantum DN (2011) Intake of lead, cadmium and mercury in kaolin-eating: a quality control. J Med Sci 11(7):267–273

    Article  Google Scholar 

  • Branco M, Rego NN, Silva PH, Archanjo IE, Ribeiro MC, Trevisani VF (2016) Bath thermal waters in the treatment of knee osteoarthritis: a randomized controlled clinical trial. Eur J Phys Rehab Med 52(4):422–430

    Google Scholar 

  • Brand CE, de Jager L, Ekosse GE (2010) Possible health effects associated with human geophagic practice: an overview. SA Med Technol 23(1):11–13

    Google Scholar 

  • Brevik EC (2013) Climate change, soils and human health. In: Brevik EC, Burgess LC (eds) Soils and human health. CRC Press, Boca Raton, pp 345–383

    Google Scholar 

  • Browman DL (2004) Tierras comestibles de la Cuenca del Titicaca: Geofagia en la prehistoria boliviana. Estudios Atacameños 28:133–141

    Google Scholar 

  • Brunet de Courssou L (2002) 5th WHO advisory group meeting on Buruli ulcer, Study Group Report on Buruli Ulcer Treatment with Clay, Geneva, Switzerland

    Google Scholar 

  • Buck BJ, Londono SC, McLaurin BT, Metcalf R, Mouri H, Selinus O, Shelembe R (2016) The emerging field of medical geology in brief: some examples. Environ Earth Sci 75:449. https://doi.org/10.1007/s12665-016-5362-6

    Article  Google Scholar 

  • Bui Qc NHC, Vesentsev AI, Buhanov VD, Sokolovsky PV, Mihaylyukova MO (2016) The antibacterial properties of modified bentonite deposit tam bo in Vietnam. Research result: pharmacology and clinical. Pharmacology 2(3):63–74

    Google Scholar 

  • Bujdáková H, Bujdáková V, Májekcvá-Kosčová H, Gaálová B, Bizovská H, Bohác P (2018) Antimicrobial activity of organoclays based on quaternary alkylammonium and alkylphosphonium surfactants and montmorillonite. Appl Clay Sci 158:21–28

    Article  Google Scholar 

  • Burguera EF, Vela-Anero A, Magalhães J (2012) Effect of hydrogen sulfide sources on inflammation and catabolic markers on interleukin 1β-stimulated human articular chondrocytes. Osteoarthr Cartil 22:1026–1035

    Article  Google Scholar 

  • Caflisch KM, Schmidt-Malan SM, Mandrekar JN, Karau MJ, Nicklas JP, Williams LB, Patel R (2018) Antibacterial activity of reduced iron clay against pathogenic bacteria associated with wound infections. Int J Antibacterial Agents 52:1–5

    Google Scholar 

  • Cantaluppi C, Fasson A, Ceccotto F, Cianchi A, Degetto S (2014) Radionuclides concentration in water and mud of Euganean thermal district. Int J Environ Res 8:237–248

    Google Scholar 

  • Cantarini L, Leo G, Giannitti C, Cevenini G, Barberini P, Fioravanti A (2007) Therapeutic effect of spa therapy and short wave therapy in knee osteoarthritis: a randomized, single blind, controlled trial. Rheumatol Int 27:523–529

    Article  Google Scholar 

  • Cao HC, Lou ZY, Qu FR et al (1982) Prevention of Keshan disease and influence of abnormal heart by using sodium selenite. Chinese J Endemiol 1(3):150–154

    Google Scholar 

  • Cao J, Li S, Shi Z, Yue Y, Sun J, Fu Q (2008) Articular cartilage metabolism in patients with Kashin–Beck disease: An endemic osteoarthropathy in China. Osteoarthr Cartil 16(6):680–688

    Article  Google Scholar 

  • Cara S, Carcangiu G, Padalino G, Palomba M, Tamanini M (2000) The bentonites in pelotherapy: thermal properties of clay pastes from Sardinia (Italy). Appl Clay Sci 16:125–132

    Article  Google Scholar 

  • Carabelli A, De Bernardi Valserra G, De Bernardi Valserra M, Tripoli S, Belloti E, Pozzi R, Campiglia C, Arcangeli P (1998) Effect of termal mud baths on normal, dry and seborrheic skin. Clin Ter 194(4):271–275

    Google Scholar 

  • Carazo E, Borrego-Sánchez A, García-Villén F, Sánchez-Espejo R, Cerezo P, Aguzzi C, Viseras C (2018) Advanced inorganic nanosystems for skin drug delivery. Chem Rec:891–899. https://doi.org/10.1002/tcr.201700061

  • Carbajo JM, Maraver F (2015) Hydrogen sulfide and health. New insights Balnea 10:93–105

    Google Scholar 

  • Carbajo JM, Maraver F (2016) Absorção cutânea de sulfureto de hidrogénio. Revista Factores de Risco 41(Jul-Set):54–62

    Google Scholar 

  • Carbajo JM, López-Delgado MI, Armijo F, Maraver F (2010) Skin response to osmotic cosmetics elaborated with mud made from chlorided ferruginous mineral water. Presse Therm Clim 147:153–154

    Google Scholar 

  • Cardoso-Gomes J, Gomes CSF (2015) Mud used for therapeutic and skin care purposes at the beach of Porto de Mós, Algarve, Portugal. Balnea 10:355–356

    Google Scholar 

  • Carretero MI (2002) Clay minerals and their beneficial effects upon human health: a review. Appl Clay Sci 21(3–4):155–163

    Article  Google Scholar 

  • Carretero MI (2013) Metodologia aplicada a la determinación del peloid óptimo. Livro de Actas do III Congresso Iberoamericano de Peloides. Nunes J, Gomes C, Silva J. (eds), Ponta Delgada, São Miguel, Açores, 19–24

    Google Scholar 

  • Carretero MI (2020a) Clays in Pelotherapy: a review, part I – mineralogy, chemistry, physical and physicochemical properties. Applied Clay Science 189. https://doi.org/10.1016/j.clay.2020.105526

  • Carretero MI (2020b) Clays in Pelotherapy: a review, part II – organic compounds, microbiology and medical application. Appl Clay Sci 189. https://doi.org/10.1016/j.clay.2020.105531

  • Carretero MI, Pozo M (2007) Mineralogía aplicada: Salud y medio ambiente. Thomson, Madrid, 464 pp

    Google Scholar 

  • Carretero MI, Gomes CSF, Tateo F (2006) Clays and human health. In: Bergaya F, BKG T, Lagaly G (eds) Handbook of clay science, Developments in clay science, vol 1. Elsevier (The Netherlands), pp 717–741

    Google Scholar 

  • Carretero MI, Pozo M, Martin-Rubi JA, Pozo E, Maraver F (2010) Mobility of elements in interaction between artificial sweat and peloids used in Spanish spa. Appl Clay Sci 48(3):506–515

    Article  Google Scholar 

  • Carretero MI, Gomes CSF, Tateo F (2013) Chapter 5: Clays, drugs and human health. In: Bergaya F, Lagaly G (eds) Handbook of clay science, vol 5, 2nd edn. Part B. Techniques and Applications. Elsevier (The Netherlands), pp 711–764

    Google Scholar 

  • Carretero MI, Pozo M, Legido JL, Fernandez-González MV, Delgado R, Gómez I, Armijo F, Maraver F (2014) Assessment of three Spanish clays for their use in pelotherapy. Appl Clay Sci 99:131–143

    Article  Google Scholar 

  • Casas LM, Pozo M, Gómez CP, Pozo E, Bessieres D, Plantier F, Legido JL (2013) Thermal behaviour of mixtures of bentonitic clay with different salinity waters. Appl Clay Sci 72:18–25

    Article  Google Scholar 

  • Cavalcanti RKBC, Ferreira HS, Macedo RO (2016) Caracterização fisico-química de argilas bentoníticas para uso em maquiagem mineral. 60° Congresso Brasileiro de Cerâmica 15 a 18 de maio de 2016, Águas de Lindóia, SP, 51–66

    Google Scholar 

  • Ceccarelli F, Perricone C, Alessandri C, Modesti M, Lagnocco A, Croia C, Di Franco M, Valesini G (2010) Exploratory data analysis on the effects of non-pharmacological treatment for knee osteoarthritis. Clin Exp Rheumatol 28:250–253

    Google Scholar 

  • Centini M, Tredici MR, Biondi N, Buonocore A, Maffei Facino R, Anselmi C (2015) Thermal mud maturation: organic matter and biological activity. Int J Cosmet Sci 37:339–347

    Article  Google Scholar 

  • Ceruti PO, Fey M, Pooley J (2003) Soil nutrient deficiencies in an area of endemic osteoarthritis (Mseleni joint disease) and dwarfism in Maputaland, South Africa. In: Geology and health: closing the gap. Oxford University Press, New York, pp 151–154

    Google Scholar 

  • Charrié JC (2007) ABC de l’argile. Grancher éd., 238pp, ISBN 2-7339-1003-5

    Google Scholar 

  • Chen J (2012) An original discovery: selenium deficiency and Keshan disease (an endemic heart disease). Asia Pac J Clin Nutr 21(3):320–326

    Google Scholar 

  • Chen X, Yang G, Chen J, Chen X, Wen Z, Ge K (1980) Studies on the relations of selenium and Keshan disease. Biol Trace Elem Res 2:91–107

    Article  Google Scholar 

  • Cho I, Blaser MJ (2012) The human microbiome at the interface of health and disease. Nat Rev Genet 13:260–270

    Article  Google Scholar 

  • Codish S, Abu-Shakra M, Flusser D, Friger M, Sukenik S (2005a) Mud compress therapy for the hands of patients with rheumatoid arthritis. Rheumatol Int 25:49–54

    Article  Google Scholar 

  • Codish S, Dobrovinsky S, Abu-Shakra M, Flusser D, Sukenik S (2005b) Spa therapy for ankylosing spondylitis at the Dead Sea. Isr Med Assoc J 7:443–446

    Google Scholar 

  • Costantino M (2006) Sulphur mud-bath treatment in osteoarthrosis: therapeutic activity and efficiency on the quality of life. Clin Ter 157:525–529

    Google Scholar 

  • Costantino M, Lampa E (2005) Psoriasis and mud bath therapy: clinical-experimental study. Clin Ter 156:145–149

    Google Scholar 

  • Cozzi F, Carrara M, Sfriso P, Todesco S, Cima L (2004) Anti-inflammatory effect of mud-bath applications on adjuvant arthritis in rats. Clin Exp Rheumatol 22:763–766

    Google Scholar 

  • Crivelli PE (1986) Non-filarial elephantiasis in Nyambene range: a geochemical disease. East Afr Med J 63(3):191–194

    Google Scholar 

  • Cunningham TB, Koehl JL, Summers JS, Haydel SE (2010) pH-dependent metal ion toxicity influences of the antibacterial activity of two natural mineral mixtures. PLoS One 5:e9456

    Article  Google Scholar 

  • Curini R, D'Ascenzo G, Fraioli A, Lagana A, Marino A, Messina B (1990) Instrumental multiparametric study of the maturing of therapeutic muds of some Italian spas. Thermochim Acta 157:377–393

    Article  Google Scholar 

  • Curri SB, Bombardelli E, Grossi F (1997) Observations on organic components of thermal mud: Morphohistochemical and biochemical studies on lipid components of mud of the Terme Dei Papi (Laghetto del Bagnaccio, Viterbo), Chemical bases of the interpretation of biological and therapeutic actions of thermal mud. Clin Ter 148:637–654

    Google Scholar 

  • Da Silva PSC, Torrecilha JK, Gouvea PFM, Máduar MF, de Oliveira SMB, Scapin MA (2015) Chemical and radiological characterization of Peruíbe black mud. Appl Clay Sci 118:221–230

    Article  Google Scholar 

  • Dai T, Tanaka M, Huang Y-Y, Hamblin M (2011) Expert Rev Anti-Infect Ther 9(7):857–879

    Article  Google Scholar 

  • Danford DE (1982) Pica and nutrition. Annu Rev Nutr 2:303–322

    Article  Google Scholar 

  • Dário GMI, Da Silva GG, Gonçalves DL, Silveira P, Junior AT, Angioletto E, Bernardin AM (2014) Evaluation of the healing activity of therapeutic clay in rat skin wounds. Mater Sci Eng C 43:109–116

    Article  Google Scholar 

  • Dashiff A, Junka RA, Libera M, Kadouri DE (2011) Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J Appl Microbiol 110(2):431–444

    Article  Google Scholar 

  • Davey G, Tekola F, Newport MJ (2007) Podoconiosis: non-infectious geochemical elephantiasis. Intensive Crit Care Nurs 101:1175–1180

    Google Scholar 

  • David R (2012) Antimicrobials: why zinc is bad for bacteria. Nat Rev Microbiol 10(1) 4pp

    Google Scholar 

  • Davies TC (2008) Environmental health impacts of east African rift volcanism. Environ Geochem Health 30:325–338. https://doi.org/10.1007/s10653-008-9168-7

    Article  Google Scholar 

  • Davies TC (2010) Chapter 8: Medical geology in Africa. In: Selinus O, Finkelman RB, Centeno J (eds) Medical geology – a regional synthesis, 1st edn. Springer, Amsterdam, pp 199–219

    Google Scholar 

  • Davies TC, Mundlano HR (2010) Environmental health impacts of dispersed mineralization in South Africa. J Afr Earth Sci 58(4):652–666

    Article  Google Scholar 

  • Davies TC, Lar UA, Solomon AO, Abraham PW (2008) Mineralogy and geochemistry of geophagic materials consumed in Jos-Plateau State of Nigeria. Paper presentation at International Conference South Africa

    Google Scholar 

  • Davis JMG (1993) In vivo assays to evaluate the pathogenic effects of minerals in rodents. In: Guthrie GD, Mossman BT (eds) Health effects of mineral dusts, reviews in mineralogy, vol 28. Mineralogical Society of America, Washington, DC, pp 471–487

    Chapter  Google Scholar 

  • Dawson EP, Moore TD, McGranity WJ (1970) The mathematical relationship of drinking water lithium and rainfall on mental hospital admission. Dis Nerv Syst 31:1–10

    Google Scholar 

  • De la Rosa-Gomez I, Olguín MT, Garcia-Sosa I, Alcantara D, Rodriguez-Fuentes G (2008) Silver supported on natural Mexican zeolite as an antibacterial material. Micropor Mesopor Mater 39:431–444. https://doi.org/10.1016/S1387-1811(00)00217-1

    Article  Google Scholar 

  • De Michele D, Giacomino M, Untura Filh M, Belderrain A (2008) Effectos sistémicos de los fangos minerales: Revisión de la Literature de los últimos 10 anos/Systemics effects of mineral muds: A ten years Literature review. Balnea 4:115–122

    Google Scholar 

  • De Vos P (2010) European material medica in historical texts: longevity of a tradition and implications for future use. J Ethnopharmacol 176:10–17

    Google Scholar 

  • Delfino M, Russo N, Migliaccio G, Carraturo N (2003) Experimental study on efficacy of thermal muds of Ischia Island combined with balneotherapy in the treatment of psoriasis vulgaris with plaques. Clin Ter 154(3):167–171

    Google Scholar 

  • Demirci S, Ustaoglu Z, Yilmazer GA, Sahin F, Baç N (2014) Antimicrobial properties of zeolite-X, and zeolite-a ion exchanged with G, Cu, and Zn against a broad range of microorganisms. Appl Biochem Biotechnol 172:1652–1662

    Article  Google Scholar 

  • Denaverre M (1975) Face masks. In: Denaverre M (ed) The chemistry and manufacture of cosmetics - volume 3, 2nd edn. Continental Press, Orlando

    Google Scholar 

  • Deribe K (2018) Podoconiosis today: challenges and opportunities. Trans R Soc Trop Med Hyg 112:473–475

    Article  Google Scholar 

  • Deribe K, Cano J, Newport MJ et al (2015a) Mapping and modelling the geographic distribution and the environmental limits of podoconiosis in Ethiopia. PLoS Negl Trop Dis 9:e0003946

    Article  Google Scholar 

  • Deribe K, Wanji S, Shafi O et al (2015b) The feasibility of eliminating podoconiosis. WHO Bull:712–718

    Google Scholar 

  • Deribe K, Brooker S, Pullan R et al (2015c) Epidemiology and individual, household and geographical risk factors of podoconiosis. Am J Hyg Trop Med:148–158

    Google Scholar 

  • Deribe K, Kebede B, Mengistu B, Negussie H, Sileshi M, Tamiru M, Tomczyk S, Tekola-Ayele F, Davey G, Fentaye A (2017) Podoconiosis in Ethiopia: from neglect to priority public health problem. Ethiop Med J 55(Suppl 1):65–74

    Google Scholar 

  • Deribe K, Cano J, Trueba ML, Newport MJ, Davey G (2018) Global epidemiology of podoconiosis: a systematic review. PLoS Negl Trop Dis 12(3). https://doi.org/10.1371/journal.pntd.0006324

  • Detellier C, Schoonheydt RA (2014) From platy kaolinite to nanorolls. Elements 10:201–206

    Article  Google Scholar 

  • Díaz Rizo O, Rudnikas AG, López JOA, D’Alessandro Rodríguez K, González Hernández P, Castillo JRF, Blanco Padilla D (2013) Radioactivity levels and radiation hazard of healing mud from San Diego River, Cuba. J Radioanal Nucl Chem 295:1293–1297

    Article  Google Scholar 

  • Díaz Rizo O, Suárez Muñoz M, González Hernández P, Rudnikas AG, D’Alessandro Rodríguez K, Rodríguez CMM, JRF C, Martínez-Villegas NV, Zerquera JT (2018) Radioactivity levels in peloids used in main Cuban spas. J Radioanal Nucl Chem 316:95–99

    Article  Google Scholar 

  • Diekema DJ, BootsMiller BJ, Vaughn TE, Woolson RF, Yankey JW (2004) Antimicrobial resistance trends and outbreak frequency in United States hospitals. Clin Infect Dis 38:78–85

    Article  Google Scholar 

  • Dinkele ES, Ballo R, Fredlund V, Ramesar R, Gibbon V (2020) Mseleni joint disease: An endemic arthritis of unknown causes. Lancet Rheumatol 2(1). https://doi.org/10.1016/S2665-9913(19)30104-3

  • Domenici D (2019) Tasting clay, testing clay. Medicinal earths, Bucarophagy and experimental knowledge in Lorenzo Legati’s Museo Cospiano (1677). Cromohs (Cyber Rev Mod Hist) 22:16. https://doi.org/10.13128/cromohs-11701

    Article  Google Scholar 

  • Dreno B (2004) Topical antibacterial therapy for acne vulgaris. Drugs 64(21):2389–2397

    Article  Google Scholar 

  • Dudare D, Klavins M (2013) Complex-forming properties of peat humic acids from a raised bog-profiles. J Geochem Exp 129:18–22

    Article  Google Scholar 

  • Edraki M, Zaarei D (2018) Modification of montmorillonite clay with 2-mercaptobenzimidazole and investigation of their antimicrobial properties. Asian J Green Chem 2:189–200

    Google Scholar 

  • Edwards MH, Jameson K, Denison H et al (2013) Clinical risk factors, bone density and fall history in the prediction of incident fracture among men and women. Bone 52(2):541–547

    Article  Google Scholar 

  • Ekosse GE, Jumbam DN (2010) Geophagic clays: their mineralogy, chemistry and possible human health effects. Afr J Biotechnol 9(40):6755–6767

    Google Scholar 

  • Ekosse GE, Ngole VM (2012) Mineralogy, geochemistry and provenance of geophagic soils from Swaziland. Appl Clay Sci 57:25–31

    Article  Google Scholar 

  • Elkayam O, Ophir J, Brener S, Paran D, Wigler I, Efron D, Even-Paz Z, Politi Y, Yaron M (2000) Immediate and delayed effects of treatment at the Dead Sea in patients with psoriatic arthritis. Rheumatol Int 19:77–82

    Article  Google Scholar 

  • EMA (European Medicines Agency), 2008) Guideline on the specification limits for residual metal catalysts for metal reagents. https://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003586.pdf

  • Espejo-Antúnez L, Cardero-Durán MA, Garrido-Ardila EM, Torres-Piles S, Caro-Puértolas B (2013) Clinical effectiveness of mud pack therapy in knee osteoarthritis. Rheumatology (Oxford) 52:659–668

    Article  Google Scholar 

  • Espírito Santo C, Lam E, Elowsky C, Quaranta D, Domaille D, Chang C, Grass G (2011) Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol 77:794–802

    Article  Google Scholar 

  • European Pharmacopeia (7th edition) (2011) Directorate for the quality of medicines of the Council of Europe, Strasbourg, France

    Google Scholar 

  • European Spas Association (ESA) (2006). Quality criteria of the European spas association (ESPA), 31p

    Google Scholar 

  • Evcik D, Kavuncu V, Yeter A, Yigit I (2007) The efficacy of balneotherapy and mud-pack therapy in patients with knee osteoarthritis. Joint Bone Spine 74:60–65

    Article  Google Scholar 

  • Everett J, Collingwood JF, Tjendana-Tjhin V, Brooks J, Lermyte F, Plascencia-Villa G, Hands-Portman I, Dobson J, Perry G, Telling ND (2018) have produced a paper entitled “Nanoscale synchrotron X-ray speciation of iron and calcium compounds in amyloid plaque cores from Alzheimer's disease subjects. Nanoscale 2018. https://doi.org/10.1039/C7NR06794A

  • Fahlén A, Engstrand L, Baker BS, Powles A, Fry L (2012) Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch Dermatol Res 304:15–22

    Article  Google Scholar 

  • Faílde RM, Mosquera LM (2006) Afecciones dermatológicas y cosmética dermotermal. Técnicas y Tecnologias en Hidrologia Médica y Hidroterapia:175–179

    Google Scholar 

  • Fakhrullin R, Lvov YM (2016) Halloysite clay nanotubes for tissue engineering. Nanomedicine 11:2243–2246

    Article  Google Scholar 

  • Fakhrullina GI, Akhatova FS, Lvov YM, Fakhrullin RF (2015) Toxicity of halloysite clay nanotubes in vivo: a Caenorhabditis elegans study. Environ Sci Nano:1

    Google Scholar 

  • Falkinham JO, Wall TE, Tanner JR, Tawaha K, Alali FQ, Li C (2009) Proliferation of antibiotic producing bacteria and concomitant antibiotic production as the basis for the antibiotic activity of Jordan’s red clays. Appl Environ Microbiol 75:2735–2741

    Article  Google Scholar 

  • Farris PK (2016) Are skincare products with probiotics worth the hype? Dermatology Times, viitattu. http://dermatologytimes.modermedicine.com/dermatology-times/news/skincare-products-probiotics

  • Feleke BE (2017) Determinants of Podoconiosis: a case control study. Ethiop J Health Sci 27(5):501–506

    Article  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Res 52(4):662–668

    Article  Google Scholar 

  • Fernández-Gonzalez MV, Martin-Garcia JM, Delgado G, Párraga J, Delgado R (2007) A study of the chemical, mineralogical and physicochemical properties of peloids prepared with two medicinal mineral waters from Lanjarón Spa (Granada, Spain). Appl Clay Sci 80-81:107–116

    Article  Google Scholar 

  • Fernández-Gonzalez MV, Martin-Garcia JM, Delgado G, Párraga J, Carretero MI, Delgado R (2013) Una aproximación al estabelecimento de los tempos óptimos de maturación. Livro de Actas do III Congresso Iberoamericano de Peloides. Nunes J, Gomes C. Silva J. (eds), Ponta Delgada, São Miguel, Açores, 127–131

    Google Scholar 

  • Fernández-Lao C, Cantarero I, Garcia JF, Arroyo M (2012) Termoterapia. In: Albornoz M, Meroño J: Procedimientos generales de fisioterapia. Elsevier, Barcelona, pp 53–65

    Google Scholar 

  • Fernandez-Torán MA (2014) Propiedades físico-quimicas de materiales susceptibles de ser utilizados en la preparación de peloides. PhD thesis, Universidad Complutense de Madrid, 250 pp

    Google Scholar 

  • Ferrand T, Yvon J (2000) Thermal properties of clay pastes for pelotherapy. Appl Clay Sci 6:21–38

    Article  Google Scholar 

  • Ferreira L, Fonseca AM, Botelho G, Almeida-Aguiar C, Neves IC (2012) Antimicrobial activity of faujasite zeolites doped with silver. Microporous Mesoporous Mater 160:126–132. https://doi.org/10.1016/j.micromeso.2012.05.006

    Article  Google Scholar 

  • Ferrell RE (2008) Medicinal clay and spiritual healing. Clay Clay Miner 56:751–760

    Article  Google Scholar 

  • Figueiredo BR, Litter MI, Silva CR, Mañay N, Londono SC et al (2010) Medical geology studies in South America. In: Selinus O, Finkelman RB, Centeno JA (eds) Medical geology: regional synthesis. Springer, Dordrecht/Heidelberg/London/New York, pp 79–106. https://doi.org/10.1007/978-90-481-3430-4. ISBN 978-90-481-3429-8 e-ISBN 978-90-481-3430-4

    Chapter  Google Scholar 

  • Finkelman RB (2019) The influence of clays on human health: a medical geology perspective. Clays and clay minerals 58 (2), J Clay Minerals Soc, ISSN 0009-8604. https://doi.org/10.1007/s42860-018-0001-9

  • Fioravanti A, Chelesschi S (2015) Mechanisms of action of balneotherapy in rheumatic diseases. Balnea 10:43–56

    Google Scholar 

  • Fioravanti A, Cantarini L, Guidelli GM, Galeazzi M (2011) Mechanisms of action of spa therapies in rheumatic diseases: what scientific evidence is there? Rheumatol Int 31(1):1–8

    Article  Google Scholar 

  • Fioravanti A, Giannitti C, Bellisai B, Iacoponi F, Galeazzi M (2012) Efficacy of balneotherapy on pain, function and quality of life in patients with osteoarthritis of the knee. Int J Biometeorol 56(4):583–590

    Article  Google Scholar 

  • Fioravanti A, Lamboglia A, Pascarelli NA (2013) Thermal water of Vetriolo, Trentino, inhibits the negative effect of interleukin 1β on nitric oxide production and apoptosis in human osteoarthritic chondrocytes. J Biol Regul Homeost Agents 27:891–902

    Google Scholar 

  • Fioravanti A, Tenti S, Gianitti C, Fortunati NA, Galeazzi M (2014) Short and long-term effects of mud-bath treatment on hand osteoarthritis: a randomized clinical trial. Int J Biometeorol 58(1):79–86

    Article  Google Scholar 

  • Flerer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631. https://doi.org/10.1073/pnas.0507535103

    Article  Google Scholar 

  • Flusser D, Abu-Shakra M, Friger M, Codish S, Sukenik S (2002) Therapy with mud compresses for knee osteoarthritis: comparison of natural mud preparations with mineral-depleted mud. J Clin Rheumatol 8(4):197–203

    Article  Google Scholar 

  • Forestier R, Françon A (2008) Crenobalneotherapy for limb osteoarthritis: systematic literature review and methodological analysis. Joint Bone Spine 75:138–148

    Article  Google Scholar 

  • Forestier R, Forestier FB, Francon A (2016) Spa therapy and knee osteoarthritis: a systematic review. Ann Phys Rehab 59(3):216–226

    Article  Google Scholar 

  • Fraioli A, Mennuni G, Fontana M, Nocchi S, Ceccarelli F, Perricone C, Serio A (2018) Efficacy of spa therapy, mud-pack therapy, balneotherapy, and mud-bath therapy in the management of knee osteoarthritis. A systematic review. Biomed Res Int:1042576

    Google Scholar 

  • François G, Micollier A, Rouvie I (2005). Les Boues Thermales, Atelier Santé Environmental, ENSP (École Nationale de la Santé Publique), Rennes, 29pp

    Google Scholar 

  • Friedlander LR, Puri N, Martin A, Schoonen A, Karzai AW (2015) The effect of pyrite on Escherichia coli in water: proof-of-concept for the elimination of waterborne bacteria by reactive minerals. J Water Health 13(1). https://doi.org/10.2166/wh.2014.013

  • Galán E (1996) Properties and applications of palygorskite-sepiolite clays. Clay Miner 31:443–453

    Article  Google Scholar 

  • Gálvez I, Torres-Piles S, Ortega E (2019) Effect of mud-bath therapy on the innate/inflammatory responses in elderly patients with osteoarthritis: a discussion of recent results and a pilot study on the role of the innate function of monocytes. Int J Biometeorol. https://doi.org/10.1007/s00484-019-01748-4

  • Galzigna L, Moretto C, Lalli A (1996) Physical and biochemical changes of thermal mud after maturation. Biomed Pharmacother 50(6–7):306–308

    Article  Google Scholar 

  • Galzigna L, Bettero A, Bellometti S (1999a) La maturation de la boue thermale et sa mesure. Première partie. Press Therm Clim 136(1):23–26

    Google Scholar 

  • Galzigna L, Bettero A, Bellometti S (1999b) La maturation de la boue thermale et sa mesure. Deuxième partie. Press Therm Clim 136(1):27–30

    Google Scholar 

  • Ganju P, Nagpal S, Mohammed MH, Kumar PN, Pandey R, Natarajan VT (2016) Microbial community profiling shows dysbiosis in the lesional skin of vitiligo subjects. Sci Rep 6

    Google Scholar 

  • Gao Z, Tseng CH, Strober BE, Pei Z, Blaser MJ (2008) Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One 3:e2719

    Article  Google Scholar 

  • Garcia PT (2014) Peloterapia en Cosmética y Medicina Estética. In: Peloteraia: Aplicaciones médicas y cosméticas de fangos termales. Fundación Bílbilis, Torres, A.H. (coordinador), pp 185–207

    Google Scholar 

  • Garcia-Villén F, Faccendini A, Miele D, Ruggeri M, Sánchez-Espejo R, Borrego-Sánchez A, Cerezo P, Rossi S, Viseras C, Sandri G (2020) Wound healing activity of nanoclay/spring water hydrogels. Pharmaceuticals, MDPI 12:467. https://doi.org/10.3390/pharmaceuticals12050467

    Article  Google Scholar 

  • Garcia Rodriguez ML, Álvarez Garcia B (2019) Origen y distribución de arcillas utilizadas en la fabricación de búcaros: bucarophagy in early modern times. Physis Terrae 1(1):57–71. ISSN: 2184-626X, http://revistas.uminho.pt/index.php/physisterrae/index

    Google Scholar 

  • Garcidueñas-Pina R, Cervantes C (1995) Microbial interactions with aluminum. Biometals 9:311–316

    Article  Google Scholar 

  • Gaskel EE, Hamilton AR, Hutcheon GA, Roberts M (2012) Antibacterial properties of cu- and Zn-exchanged laponites® 6th mid-European clay conference (MECC’12), Průhonice near Prague, September 2012, Czech Republic, M. Šťastný a A. Žigová (eds.) 87

    Google Scholar 

  • Gautier T (1845) Voyage en Espagne, 1840−1845 Charpentier, Paris, 1845

    Google Scholar 

  • Geissler PW, Mwaniki DL, Thiong’o F, Michaelsen KF, Friis H (1997) Geophagy, iron status and anemia among primary school children in western Kenya. Tropical Med Int Health 3(7):529–534

    Article  Google Scholar 

  • Geissler P, Shulman C, Prince R, Mutemi W, Mnazi C, Friis H, Lowe B (1998) Geophagy, iron status and anaemia among pregnant women on the coast of Kenya. Trans R Soc Trop Med Hyg 92:549–553

    Article  Google Scholar 

  • Geissler PW, Prince RJ, Levene M, Poda C, Beckerly SE, Mutemi W, Schulman CE (1999) Perception of soil eating and anaemia among pregnant women on the Kenyan coast. Soc Sci Med 48(8):1069–1079

    Article  Google Scholar 

  • George KM, Barker LP, Welty DM, Small PLC (1998) Partial purification and characterization of biological effects of a lipid toxin produced by Mycobacterium ulcerans. Infect Immun 66(2):587–593

    Article  Google Scholar 

  • George KM, Chatterjee D, Gunawardana G, Welty D, Hayman J, Lee R, Small PLC (2002) Mycolactone: a polyketide toxin from Mycobacterium ulcerans, required for virulence. Science 283(5403):854

    Article  Google Scholar 

  • Gerencser G, Muranyiu E, Szendi K, Varga C (2010) Ecotoxicological studies on Hungarian peloids (medicinal muds). Appl Clay Sci 50(1):47–50

    Article  Google Scholar 

  • Ghadiri M, Chrzanowski W, Rohawizadeh R (2015) RSC Advances, issue:37

    Google Scholar 

  • Ghorbani H (2008) Geophagia, a soil – environmental related disease . International Meeting on Soil Fertility Land Management and Agroclimatology. Turkey, 957–967

    Google Scholar 

  • Giotakos O et al (2015) Lithium in the public water supply and suicide mortality in Greece. Biol Trace Elem Res 156(1–3):376–379

    Google Scholar 

  • Glavas N, Mourelle ML, Gómez CP, Legido JL, Smuc NR, Dolenec M, Kovac N (2017) The mineralogical, geochemical, and thermophysical characterization of healing saline mud for use in pelotherapy. Appl Clay Sci 135:119–128

    Article  Google Scholar 

  • Glyn-Jones S, Palmer AJR, Agricola R, Price AJ, Vincent TL, Weinans H, Carr AJ (2015) Osteoarthritis. Lancet 386(9991):376–387

    Article  Google Scholar 

  • Gomes CSF (2002) Argilas: Aplicações na Indústria. O Liberal (editor), Câmara de Lobos, R.A. da Madeira, 377 pp

    Google Scholar 

  • Gomes CSF (2015) In pelotherapy what is more important, the peloid solid phase or the peloid liquid phase? Balnea 10:125–142

    Google Scholar 

  • Gomes CSF (2018) Healing and edible clays: a review of basic concepts, benefits and risks. Journal Environmental Geochemistry and Health, Springer

    Google Scholar 

  • Gomes de Melo BA, Lopes Motta F, Andrade Santana MH (2015) Humic acids: structural properties and multiple functionalities for novel technological developments. Mater Sci Eng C62:967–974

    Google Scholar 

  • Gomes CSF, Silva JBP (2007) Minerals and clay minerals in medical geology. Appl Clay Sci, Elsevier 36:4–21

    Article  Google Scholar 

  • Gomes CSF, Hernandez R, Sequeira MC (2009) Characterization of clays used for medicinal purposes in the Archipelago of Cape Verde. Geochim Bras 22(3):315–331

    Google Scholar 

  • Gomes CSF, Silva JBP, Gomes JHC (2015) Natural peloids versus designed and engineered peloids. Bol Soc Esp Hidrol Méd 30(1):15–36

    Article  Google Scholar 

  • Gomes CSF, Gomes JH, Silva EF (2019) Bactericidal Peloid and Ointment based on Kaolin and Thermal Mineral Water to be Used in the Treatment of Infectious Skin Wounds. Abstract Book of the International Symposium on Thermalism and Quality of Life (STCV-2019), Universidad de Vigo, Campus de Ourense

    Google Scholar 

  • Gomes CSF, Gomes JH, Silva EF (2020) bacteriostatic and bactericidal clays: An overview. Environ Geochem health, published online 30 June 2020, 21pp. Springer Nature BV. https://doi.org/10.1007/s10653-020-00628-w

  • Gómez CP, Maraver F, Vela L, Carretero I, Nunes JC, Silva JB, Gomes C, Mourelle ML, Legido JL (2019) 10 años de Congreso Iberoamericano de Peloides. Bol Soc Esp Hidrol Med 34(2):129–136. https://doi.org/10.23853/bsehm.2019.0959

    Article  Google Scholar 

  • Governa M, Valentino M, Visonà I, Monaco F, Amati M, Scancarello G, Scansetti G (1995) In vitro biological effects of clay minerals advised as substitutes for asbestos. Cell Biol Toxicol 11:237–249

    Article  Google Scholar 

  • Greenblatt MD (2018) Integrative Medicine for Alzheimer’s: the breakthrough natural treatment plan that prevents Alzheimer using nutritional Lithium” 176pp

    Google Scholar 

  • Grewal S, Bhagat M, Vakhlu J (2014) Antimicrobial protein produced by Pseudomonas aeruginosa JU-Ch 1, with a broad spectrum of antimicrobial activity. Biocatal Agric Biotech 3:332–337

    Article  Google Scholar 

  • Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192

    Article  Google Scholar 

  • Grigsby RK, Thyer BA, Waller RJ, Johnston GA Jr (1999) Chalk eating in middle Georgia: a culture-bound syndrome of pica? South Med J 92:190–192

    Article  Google Scholar 

  • Guimarães F, Guimarães L (1954) Hidrologia Médica. Edição do Instituto de Climatologia e Hidrologia da Universidade de Coimbra, Coimbra

    Google Scholar 

  • Gundacker C, Kutalek R, Glaunach R, Deweis C, Hengstschlager M, Prinz A (2017) Geophagy during pregnancy: is there a health risk for infants? Environ Res 156:145. https://doi.org/10.1016/j.envres2017.03.028

    Article  Google Scholar 

  • Guthrie GD (1992) Biological effects of inhaled minerals. Am Mineral 77:225–243

    Google Scholar 

  • Halsted JA (1968) Geophagia in man: its nature and nutritional effects. Am J Clin Nutr 21:1384–1393

    Article  Google Scholar 

  • Hanif M, Jabbas F, Sharif S, Abbas G, Farooq A, Aziz M (2016) Halloysite nanotubes as a new drug-delivery system: a review. Clay Miner 51(3):469–478

    Article  Google Scholar 

  • Hári J, Polyák P, Mester D, Micusik M, Omastová M, Kállay M, Pukánsky B (2016) Adsorption of an active molecule on the surface of halloysite for controlled release application: interaction, orientation, consequences. Appl Clay Sci 132-133:167–174

    Article  Google Scholar 

  • Harini K, Ajila V, Hedge S (2013) Bdellovibrio bacteriovorus: A future antimicrobial agent? J Indian Soc Periodontal 17(6):823–825

    Article  Google Scholar 

  • Hassen A, Saidi N, Cherifh M, Boudabous A (1998) Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thuringiensis. Bioresour. Technol, vol 65. Elsevier Science, pp 73–82

    Google Scholar 

  • Hauser EA (1950) Canamin clay and its properties. Can Chem Process Ind 34:979

    Google Scholar 

  • Hauser EA (1952) Kisameet Bay clay deposit. Problems of Clay and Laterite genesis, Symposium at Annual Meeting of the American Institute of Mining and Metallurgical Engineers, St Louis, MO, In, pp 178–190

    Google Scholar 

  • Haydel SE, Remenih CM, Williams LB (2008) Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. J Antimicrob Chemother 61:353–361

    Article  Google Scholar 

  • Health Canada (2012) Guidance on heavy metal impurities in cosmetics. http://www.hc-sc.gc.ca/cps-spc/pubs/indust/heavy_metalsmetaux_lourds/index-eng.php

  • Henry JM, Cring D (2013) Chapter 8: Geophagy: an anthropological perspective. In: Brevik EC, Burgess LC (eds) Soils and human health. CRC Press, Taylor & Francis Group

    Google Scholar 

  • Hernández D, Lazo L, Valdés L, Ménorval LC, Rozynek Z, Rivera A (2018) Synthetic clay mineral as nanocarrier of sulfamethoxazole and trimethoprim. Appl Clay Sci 161:395–403

    Article  Google Scholar 

  • Holešová S, Hundáková M, Pazdziora E (2016) Antibacterial kaolinite-based nanocomposites. Procedia materials science, vol 12. Elsevier, pp 124–129

    Google Scholar 

  • Hollinger MA (1990) Pulmonary toxicity of inhaled and intravenous talc. Toxicol Lett 52:121–127

    Article  Google Scholar 

  • Hooda PS, Henry CJK, Seyoum TA, Armstrong LDM, Fowler MB (2002) The potential impact of geophagia on the bioavailability of iron, zinc and calcium in human nutrition. Environ Geochem Health 24:305–319

    Article  Google Scholar 

  • Hooda PS, Henry CJK, Seyoum TA, Armstrong LDM, Fowler MB (2004) The potential impact of soil ingestion on human mineral nutrition. Sci Total Environ 333:75–87

    Article  Google Scholar 

  • Horno MAP (2014) Historia de la Peloterapia. In: Peloterapia: Aplicaciones médicas y cosméticas de fangos termales. Torres AH (coordinador), Fundación Bílbilis, pp 47–53

    Google Scholar 

  • Hrenovic J, Milenkovic J, Goic-Barisic I, Rajic N (2013) Antibacterial activity of containing natural zeolite against clinical isolates of Acinetobacter baumannii. Microporous Mesoporous Mater 169:148–152

    Google Scholar 

  • Hu CH, Xia MS (2006) Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K-88. Appl Clay Sci 31:180–184

    Article  Google Scholar 

  • Hu CH, Xu ZR, Xia MS (2005) Antibacterial effect of Cu2+−exchanged montmorillonite on Aeromonas hydrophila and discussion on its mechanism. Vet Microbiol 109:83–88

    Article  Google Scholar 

  • Huebl L, Leick S, Guettl L, Akello G, Kutalek R (2016) Geophagy in northern Uganda: perspectives from consumers and clinicians. Am J Trop Med Hyg 95(6):1440–1449

    Article  Google Scholar 

  • Humboldt A (1985) [1799] Viaje a las Regiones Equinocciales del Nuevo Continente. Caracas: Monte Ávila Editores, T. 4, 601 p. (translated by Lisandro Alvarado)

    Google Scholar 

  • Hunter JM (1973) Geophagy in Africa and United States: a culture-nutrition hypothesis. Geogr Rev 63:170–195

    Article  Google Scholar 

  • Hunter JM, De Kleime R (1984) Geophagy in Central America. Geogr Rev 74:157–169

    Article  Google Scholar 

  • Igeoma KH, Onyoche OE, Uju OV, Chukwuene IF (2014) Assessment of heavy metals in edible clays sold in Onitsha metropolis of Anambra state, Nigeria. Br J Appl Sci Technol 4(14):2114–2124

    Article  Google Scholar 

  • Izugbara CO (2003) The cultural context of geophagy among pregnant and lactating Ngwa women of southeastern Nigeria. Afr Anthropol 10(2):180–199

    Google Scholar 

  • Jayrajsinh S, Pharm G, Agrawal Y, Bakre L (2017) Montmorillonite nanoclay as a multifaceted drug-delivery carrier: a review. J Drug Deliv Sci Technol 39:200–209

    Article  Google Scholar 

  • Jeong JH, Lee CY, Chung DK (2016) Probiotic lactic acid bacteria and skin health. Crit Rev Food Sci Nutr 56:2331–2337

    Article  Google Scholar 

  • Johns T (1986) Detoxification functions of geophagy and domestication of the potato. J Chem Ecol 12:635–646

    Article  Google Scholar 

  • Johns T, Duquette M (1991) Detoxification and mineral supplementation as functions of geophagy. Am J Clin Nutr 53:448–456

    Article  Google Scholar 

  • Jokić A, Sremcević N, Karagülle Z, Pekmezović T, Davidović V (2010) Oxidative stress, hemoglobin content, superoxide dismutase and catalase activity influenced by Sulphur baths and mud packs in patients with osteoarthritis. Vojnosanit Pregl 67:573–578

    Article  Google Scholar 

  • Jones TP, Berube KA, Wlodarczyk AJ, Prytherch ZC, Hassan Y, Potter S, Adams R (2015) The bioreactivity of “red clays” from basaltic terrains. EuroClay conference 2015, proceedings. In: Williams L, Jones T, Rocha F (eds) Bioreactive clay mineral impacts on environmental and human health. Edinburgh, Scotland, p 137

    Google Scholar 

  • Jumbam ND (2013) Geophagic materials: the possible effects of their chemical composition on human health. Trans R Soc South Africa 68:177–182

    Article  Google Scholar 

  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178. https://doi.org/10.1128/AEM.02001.07

    Article  Google Scholar 

  • Jurinski JB, Rimstidt JD (2001) Biodurability of talc. Am Mineral 86:392–399

    Article  Google Scholar 

  • Kabacs N, Memon A, Obinwa T et al (2011) Lithium in drinking water and suicide rates across the East of England. Br J Psychiatry 198:406–407

    Article  Google Scholar 

  • Kalinowski BE, Bengtsson A, Pedersen K, Lilja C, Sellin P, Sjoland A (2016) Threshold density for microbial sulphate reduction in bentonite. In: Goldschmidt Conference Proceedings, Yokohama, Abstract n° 771

    Google Scholar 

  • Kambunga SN, Candeias C, Hasheela I, Mouri H (2019) Review of the nature of some geophagic materials and their potential health effects on pregnant women: some examples from Africa. Environ Geochem Health. https://doi.org/10.1007/s10653-019-00288-5

  • Kamitsou MD, Sygouni V, Kanellopoulou DG, Gardikis K, Koutsoukos KPG (2018) Physicochemical characterization of sterilized muds for pharmaceutics/cosmetics applications. Environ Geochem Health 40:1449–1464

    Article  Google Scholar 

  • Kapusta ND et al (2011) Lithium in drinking water and suicide mortality. Br J Psychol 198(5):346–350

    Article  Google Scholar 

  • Karakaya MC, Doğru M, Karakaya N, Vural HC, Kuluöztürk F, Bal SS (2015) Radioactivity concentrations and dose assessments of therapeutic peloids from some Turkish spas. Clay Miner 50:221–232

    Article  Google Scholar 

  • Karpińska M, Kapala MJ, Raciborska A, Kulesza G, Milewska A, Mnich S (2017) Radioactivity of natural medicinal preparations contained extracts from peat mud available in retail trade used externally. Nat Prod Res 31:1935–1939

    Article  Google Scholar 

  • Key TC Jr, Horger EO III, Miller JM (1982) Geophagia as a cause of maternal death. Obstet Gynaecol 60:525–526

    Google Scholar 

  • Khurama C, Vela A, Andhariye N, Pandey OPCB (2014) Antibacterial activity of silver: the role of hydrodynamic particle size at nanoscale. J Biomed Mater Res A 102:3361–3368

    Article  Google Scholar 

  • Kikouama OJR, Baldé L (2010) From edible clay to clay-containing formulation for optimization of the Oral delivery of some trace elements: a review. Int J Food Sci Nutr 61(8):1–21

    Google Scholar 

  • Kikouama OJR, Le Cornec F, Bouttier S, Launay A, Baldé L, Yagoubi N (2009) Evaluation of trace elements released by edible clays in physicochemically simulated physiological media. Int J Food Sci Nutr 60(2):130–142

    Article  Google Scholar 

  • Kikouama OJR, Le Cornec F, Bouttier S, Launay A, Baldé L, Yagoubi N (2009a) Evaluation of trace elements released by edible clays in physicochemically simulated physiological media. Int J Food Sci Nutr 60(2):130–142

    Article  Google Scholar 

  • Kikouama OJR, Konan KL, Katty A, Bonnet JP, Baldé L, Yagoubi N (2009b) Physicochemical characterization of edible clays and release of trace elements. Appl Clay Sci 43(1):135–141

    Article  Google Scholar 

  • Kim JH, Lee J, Lee HB, Shin JH, Kim EK (2010) Water-retentive and anti-inflammatory properties of organic and inorganic substances from Korean sea mud. Nat Prod Commun 5(3):395–398

    Google Scholar 

  • Korevaar DA, Visser BJ (2012) Podoconiosis, a neglected disease. Neth J Med 70(5):210–214

    Google Scholar 

  • Kostyniak P, Constanzo PM, Syracuse J, Giese R (2003) Antimicrobial activity of modified clay minerals. Abstract in Clays and Clay minerals Annual Meeting, Athens Ga

    Google Scholar 

  • Kutalek R, Wewalka G, Gundacker C, Auer H, Wilson J, Haliza D, Huhulescu S, Hillier S, Sager M (2010) Geophagy and potential health implications: geohelminths, microbes and heavy metals. Trans R Soc Trop Med Hyg 104(12):787–795

    Article  Google Scholar 

  • Kwakye-Awuah B, Williams C, Kenward MA, Radecka I (2008) Antimicrobial action and efficiency of silver-loaded zeolite X. J Appl Microbiol 104:1516–1524

    Article  Google Scholar 

  • Kwong AM, Henry J (2003) Why is geophagy treated like dirt? Deviant Behav 24:353–371. https://doi.org/10.1080/713840222.l

    Article  Google Scholar 

  • Lafi SA, Al-Dulaimy MR (2011) Antibacterial effect of some mineral clays in vitro. Egypt Acad J Biol Sci 3(19):75–81

    Google Scholar 

  • Lambert V, Boukhari R, Misslin-Tritsch C, Carles G (2013) La géophagie: advances dans la comprehension de ses causes et consequences. La Revue de Médicine Interne 34:94–98

    Article  Google Scholar 

  • Lansdown ABG (2006) Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol 33:17–34

    Article  Google Scholar 

  • Lar UA, Agene JI, Umar AI (2014) Geophagic clay materials from Nigeria: a potential source of heavy metals and human health implications in mostly women and children who practice it. Environ Geochem Health 37:363–375. https://doi.org/10.1007/s10653-014-9653-0

    Article  Google Scholar 

  • Laufer B (1930) Geophagy. Field Museum of natural history, publication 280. PhD Thesis Anthropology Series 18, 99–198

    Google Scholar 

  • Legido JL, Mourelle ML (eds.) (2008) Investigaciones en el ámbito Iberoamericano sobre Peloides termales. Universidad de Vigo, 308 pp

    Google Scholar 

  • Legido JL, Medina C, Mourelle L, Carretero MI, Pozo M (2007) Comparative study of the cooling rates of bentonite, sepiolite and common clays for their use in pelotherapy. Appl Clay Sci 36:148–160

    Article  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384

    Article  Google Scholar 

  • Letaief S, Detellier C (2013) Kaolinite-polymer nanocomposites. In: Bergaya F, Lagaly G (eds) Developments of clay science v.5A, Handbook of clay science, 2nd edn. Elsevier, Oxford, pp 707–719

    Google Scholar 

  • Lewis J (1935) Thermal properties of peloids. Arch Med Hydrol 8:181

    Google Scholar 

  • Li SJ, Yang LS, Li YH, Wang WY, Xirao RD (2006) Relationship between the content of selenium in grains and the Kashin–Beck disease in Tibet, China. Chin J Endemiol 25(6):673–674

    Google Scholar 

  • Li SJ, Li W, Hu X, Yang L, Xirao R (2009) Soil selenium concentration and Kashin-Beck disease prevalence in Tibet, China. Front Environ Sci Eng China 3:62–68

    Article  Google Scholar 

  • Lim DG, Jeong WW, Kim NA, Lim JY, Lee SH, Shim WS, Kang NG, Jeong SH (2014) Effect of the glyceryl monooleate-based lyotropic phases on skin permeation using in vitro diffusion and skin imaging. Asian J Pharm Sci 9:324–329

    Article  Google Scholar 

  • Liu H, Zeng C, Gao SG, Yang T, Luo W, Li YS (2013) The effect of mud therapy on pain relief in patients with knee osteoarthritis: a meta-analysis of randomized controlled trials. J Int Med Res 41:1418–1425

    Article  Google Scholar 

  • Londoño SC (2007) Caracterización Geoquímica Preliminar De Las Arcillas Con Potencial De Uso Medicinal Presentes En Araracuara, Caquetá, Colombia. BSc Monograph, Geology Program, Universidad Nacional, Bogotá, Colombia

    Google Scholar 

  • Londono SC, Williams L (2015) Evaluating the antibacterial action of a clay from the Colombian Amazon, International Applied Geochemistry Symposium, April 2015, 7pp

    Google Scholar 

  • Londono SC, Williams LB (2016) Unraveling the antibacterial mode of action of a clay from Colombian Amazon. Environ Geochem Health 38:363–379

    Article  Google Scholar 

  • Londono SC, Hartnett HH, Williams LB (2017) The antibacterial activity of aluminium in clay from Colombian Amazon. Environ Sci Technol 51:2401–2408. https://doi.org/10.1021/acs.est.6b04670

    Article  Google Scholar 

  • Lopez-Galindo A, Viseras C (2004) Pharmaceutical and cosmetic application of clays. In: Wypych F, Satyanarayana KG (eds) Clay surfaces: fundamentals and applications. Elsevier, Amsterdam, pp 267–289

    Chapter  Google Scholar 

  • Lopez-Galindo A, Viseras C, Cerezo P (2007) Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl Clay Sci 36:51–63

    Article  Google Scholar 

  • Lucera A, Costa C, Conte A, Del Nobile MA (2012) Food applications of natural antimicrobial compounds. Front Microbiol vol 3, article 287(1)

    Google Scholar 

  • Lv Y, Tao Y, Yang Z, Zhao W, Zhang M, Wang Q (2014) Constraint on selenium bioavailability caused by its geochemical behavior in typical Kashin-Beck disease areas in Aba, Sichuan Province of China. Sci Total Environ 493:737–749

    Article  Google Scholar 

  • Lv XL, Zhang J, Gao WY, Xing WM, Yang ZX, Yue YX, Wang YZ, Wang GT (2018) Association between osteoporosis, bone mineral density levels and Alzheimer’s disease: a systematic review and meta-analysis. Int J Gerontol 12:76–83

    Article  Google Scholar 

  • Lvov Y, Price R (2015) Halloysite nanotubes: Applications in nanomaterial research. Institute for Micromanufacturing, Louisiana, Tech. Univ., USA

    Google Scholar 

  • Lvov Y, Wang W, Zhang L, Fakhrullin R (2016) Halloysite nanotubes for loading and sustained release of functional compounds. Adv Mater 28(6):1227–1250

    Article  Google Scholar 

  • Lyles MP (2018) Biological, chemical and environmental hazards of desert dust to military personnel. In: De Vivo B, Belkin HE, Lima A (eds) Environment geochemistry, 2nd edn. Elsevier, Amsterdam, pp 467–485

    Google Scholar 

  • Ma’or Z, Henis Y, Along Y, Orlov E, Sorensen KB, Oren A (2006) Antimicrobial properties of Dead Sea black mineral mud. Int J Dermatol 45:504–511

    Article  Google Scholar 

  • Ma’or Z, Halicz L, Portugal-Cohen M, Russo MZ, Robino F, Vanhaecke T, Rogiers V (2015) Safety evaluation of traces of nickel and chrome in cosmetics: the case of Dead Sea mud. Regul Toxicol Pharmacol 73:797–801

    Article  Google Scholar 

  • Macheka LR, Olowoyo JO, Matsela L, Khine AA (2016) Prevalence of geophagia and its contributing factors among pregnant women at Dr. George Mukhari Academic Hospital, Pretoria. Afr Health Sci 16:972–978

    Article  Google Scholar 

  • Magana SM, Quintana (2008) Antibacterial activity of montmorillonites modified with silver. J Mol Catal A Chem 281:192–199

    Article  Google Scholar 

  • Magalotti L (1825) Varie operetta del Conte Lorenzo Magalotti con giunta di otto lettere sulle terra odorosa d’Europa e d’America volgarmente dette biccheri e ora pubblicate per la prima volta. Giovanni Silvestrini, Milano, 1825, Lettera ottava, pp 455

    Google Scholar 

  • Mahaney WC, Milner MW, Mulyono HS, Hancock RGV, Aufreiter S, Reich M, Wink M (2000) Mineral and chemical analyses of soils eaten by humans in Indonesia. Int J Environ Health Res 10:93–109

    Article  Google Scholar 

  • Mahboob N, Sousan K, Shirzad A, Amir G, Mohammad V, Reza M, Mansour VA, Hadi V (2009) The efficacy of a topical gel prepared using Lake Urmia mud in patients with knee osteoarthritis. J Altern Complement Med 15:12391242

    Article  Google Scholar 

  • Malachová K, Praus P, Rybková Z, Kosák O (2011) Antibacterial and antifungal activities of silver, copper and zinc montmorillonite. Appl Clay Sci 53:642–645

    Article  Google Scholar 

  • Manderson L, Aaraard-Hansen J, Allotey P (2009) Social research on neglected diseases of poverty: continuing and emerging themes. PLoS Neglect Trop Dis:e332

    Google Scholar 

  • Maraver F (2006) Antecedentes históricos de la Peloterapia. Anales de Hidrlogia Médica 1:17–42

    Google Scholar 

  • Maraver F (2008) El agua mineromedicinal: Una herramienta curativa milenaria. Tribunatermal 11:54–57

    Google Scholar 

  • Maraver F (2013) Mechanisms of action of pelotherapy: state of the art. In: Nunes J, Gomes C, Silva J (eds) Livro de Actas do III Congresso Iberoamericano de Peloides. Ponta Delgada, São Miguel, Açores, pp 9–18

    Google Scholar 

  • Maraver F (2017) Investigación actual en peloterapia. Libro de Resúmenes del V Congreso Iberoamericano de Peloides, Balneario El Raposo, Badajoz, España, 33–35

    Google Scholar 

  • Maraver F, Fernandez-Torán MA, Corvillo I, Morer C, Váquez I, Aguillera L, Armijo F (2015) Peloterapia: Una Revisión. Med Nat 9(1):38–46

    Google Scholar 

  • Mascolo N, Summa V, Tateo F (1999) Characterization of toxic elements in clays for human healing use. Appl Clay Sci 15:491–500

    Article  Google Scholar 

  • Mascolo N, Summa V, Tateo F (2004) In vivo experimental data on the mobility of hazardous chemical elements from clays. Appl Clay Sci 25:23–28

    Article  Google Scholar 

  • Massaro M, Lazzara G, Milioto S, Noto R, Riela S (2017) Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications. J Mater Chem B5:2867–2882. https://doi.org/10.1039/C7TB90071F

    Article  Google Scholar 

  • Massaro M, Campofelice A, Colletti CG, Lazzara G, Noto R, Riela S (2018a) Functionalized halloysite nanotubes: efficient carrier systems for antifungine drugs. Appl Clay Sci 160:186–192

    Article  Google Scholar 

  • Massaro M, Colletti CG, Lazzara G, Riela S (2018b) The use of some clay minerals as natural resources for drug carrier applications. J Func Biomater 9:58. https://doi.org/10.3390/jfb9040058

    Article  Google Scholar 

  • Masurat P, Ericksson S, Pedersen K (2010) Microbial sulphide production in compacted Wyoming bentonite MX-80 under in situ conditions relevant to a repository for high-level radioactive waste. Appl Clay Sci 47:58–64

    Article  Google Scholar 

  • Matas AG, Torres AH, Úbeda JCB (2014) Peloterapia: Conceptos generales, terminología, clasificación. In: Peloterapia: Aplicaciones médicas y cosméticas de fangos termales. Torres AH (coordinator). Ed, Fundación Bílbilis, Madrid, pp 19–31

    Google Scholar 

  • Matz H, Orion E, Wolf R (2003) Balneotherapy in dermatology. Dermatol Ther 16(2):132–140

    Article  Google Scholar 

  • Maxim LD, Niebo R, McConnelll EE (2016) Bentonite toxicology and epidemiology: a review. J Inhal Toxicol 28(3):591–617

    Article  Google Scholar 

  • McInnes AD (2012) Diabetic foot disease in the United Kingdom: about time to put feet first. J Foot Ankle Res 5:26

    Article  Google Scholar 

  • Meijide R, Salgado T, Lianes A, Legido JL, Mourelle ML, Gómez C (2010) Evaluación de los câmbios en la piel trás la aplicación de peloides mediante métodos de bioengenharia cutânea. In: Maraver F, Carretero MI (eds) Libro de Resúmenes del II Congreso Iberoamericano de Peloides. C.E.R.S.-A, Madrid, pp 48–49

    Google Scholar 

  • Meijide R, Mourelle ML, Vela-Anero A, López EM, Burguera EF, Pérez CG (2014) Aplicación a pacientes: Peloterapia en patologias dermatológicas. In: Peloterapia: Aplicaciones médicas y cosméticas de fangos termales. Fundación Bílbilis, Coordinator, Torres AH, pp 169–183

    Google Scholar 

  • Meijide R, Burguera EF, Vela-Anero A (2015) Peloterapia y Artrosis. Balnea 10:289–300

    Google Scholar 

  • Metge D, Harvey R, Eberl D, Williams L (2007) Bactericidal properties of clays used for treatment of Buruli ulcer-an emerging public health threat. Geological Society of America, Abstracts of Denver, Colorado, Meeting

    Google Scholar 

  • Michaelis de Vasconcellos C (1905) Algumas palavras a respeito de púcaros de Portugal. Bulletin Hispanique, tome 7(2):140–196

    Article  Google Scholar 

  • Michele D, Giacomino M, Untura-Filho M, Beldarrain A (2006) Efectos sistémicos de los fangos minerales. Revisión de la literatura de los últimos 10 años/Systemics effects of minerals muds. A ten years literature review. Anales de Hidrología. Medica 1:135–142

    Google Scholar 

  • Mihranyan A, Ferraz N, Strømme M (2012) Current status and future prospects of Balnea 10, nanotechnology in cosmetics. Prog Mater Sci 57(5):875–910

    Article  Google Scholar 

  • Milenkovic J, Hrenovic J, Matijasevic D, Niksic M, Rajic N (2017) Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates. Environ Sci Pollut Res 24:20273–20281

    Article  Google Scholar 

  • Mishra BB, Roy R (2015) Soil science vs Science for medicine. EC Agri 2(5):454–461

    Google Scholar 

  • Mishra BB, Kibret K, Feyissa S, Roy R (2017) Clinical relevance of type specific clays. Biomed J Sci Technol Res 1(5). https://doi.org/10.26717/BISTR.2017.01.000455

  • Moghadas B, Dashtimoghhadam E, Mirzadeh H, Farzad S, Mohammad M et al (2016) Novel chitosan-based nanobiohybrid membranes for wound dressing applications. RSC Adv 6:7701–7711

    Article  Google Scholar 

  • Molla YB, Wardrop NA, Le Blond JS, Baxter P, Newport MJ, Atkinson PM, Davey G (2014) Modelling environmental factors correlated with podoconiosis: a geospatial study of non-filarial elephantiasis. Int J Health Geogr 13:24

    Article  Google Scholar 

  • Morer C, Roques C-F, Françon A, Forestier R, Maraver F (2017) The role of mineral elements and other chemical compounds used in balneology: data from double-blind randomized clinical trials. Int J Biometeorol, Springer, ISSN 0020-7128, https://doi.org/10.1007/s00484-017-1421-2.D

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  Google Scholar 

  • Morrison KD, Underwood JC, Metge DW, Eberl DD, Williams LB (2013) Mineralogical variables that control the antibacterial effectiveness of a natural clay deposit. Environ. Geochem. Health. https://doi.org/10.1007/s10653-013-9585-0, Springer

  • Morrison KD, Misra R, Williams LB (2016) Unearthing the antibacterial mechanism of medicinal clay: a geochemical approach to combating antibiotic resistance. Sci Rep 6:19043. https://doi.org/10.1038/Srep19043

    Article  Google Scholar 

  • Morrison KD, Williams SN, Williams LB (2017) The anatomy of an antibacterial clay deposit: a new economic geology. Econ Geol 112(7):1551–1570

    Article  Google Scholar 

  • Munñoz SM, Melián C, Gelen A, Diaz O, Martinez-Santos M, Ruiz-Romera E, Fagundo JR, Pérez-Gramatges A, Martinez-Villegas NV, Blanco D, Hernández R, González-Hernandez P (2015) Physicochemical characterization, element speciation and hydrogeochemical modeling of river and peloid sediments used for therapeutic uses. App Clay Sci 104:36–47. https://doi.org/10.1016/j.clay.2014.11.029

    Article  Google Scholar 

  • Musumeci G, Aiello FC, SzychlinskaMA DRM, Castrogiovanni P, Mobasheri A (2015) Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression. Int J Mol Sci 16(3):6093–6112

    Article  Google Scholar 

  • Mwalongo D, Mohamed NK (2013) Determination of essential and toxic elements in clay soil commonly consumed by pregnant women in Tanzania. Radiat Phys Chem 91:15–18

    Article  Google Scholar 

  • Naik A, Pechtold L, Potts R, Guy R (1995) Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. J Control Release 37:299–306

    Article  Google Scholar 

  • Nchito M, Geissler PW, Mubila L, Friis H, Olsen A (2004) Effects of iron and multimicronutrient supplementation on geophagy: a two-by-two factorial study among Zambian school-children in Lusaka. Trans R Soc Trop Med Hyg 98:218–227

    Article  Google Scholar 

  • Ngole VM, Ekosse GE, Jager L, Songca SP (2010) Physicochemical characteristics of geophagic clayey soils from South Africa and Swaziland. Afr. J Biotechnol 9(36):5929–5930

    Google Scholar 

  • Nissenbaum A, Rullköetter J, Yechieli Y (2002) Are the curative properties of ‘black mud’ from the Dead Sea due to the presence of bitumen (asphalt) or other types of organic matter? Environ Geochem Health 24(4):327–335

    Article  Google Scholar 

  • Njiru H, Elchalal U, Paltiel O (2011) Geophagy during pregnancy in Africa: a literature review. Obstet Gynecol Surv 66:452–459

    Article  Google Scholar 

  • Nkansah MA, Korankye M, Darko G, Dodd M (2016) Heavy metal content and potential health risk of geophagic white clay from Kumasi Metropolis in Ghana. Toxicol Rep 3:644–651. https://doi.org/10.1016/j.toxrep.2016.08.005

    Article  Google Scholar 

  • Nnorom IC (2016) Major and minor element contents of Calabash clay (nzu) from Abia State, Nigeria: evaluation of potential intake benefits and risks. Toxicol Environ Chem 98:149–166. https://doi.org/10.1080/02772248.2005.1110157

    Article  Google Scholar 

  • Nordberg M, Cherian MG (2005) Biological responses of elements. In: Selinus O, Alloway B, Centeno JA, Finkelman RB, Fuge R, Lindh U, Smedley P (eds) Essentials of medical geology: impacts of the natural environment on public health, pp 179–200

    Google Scholar 

  • Novelli, G (1996) Applicazion medicali e Igieniche delle bentoniti. Atti Conv. “Argille Curative”, Veniale F. (editor), Gruppo Italiano AIPEA, Salice Terme (PV), Tipografia Trabella, Milano

    Google Scholar 

  • Novelli G (1998) Applicazioni Cosmetiche e Medicaliu delle argille smectiche. Cosmetic News 122:350–357

    Google Scholar 

  • Novelli G (2000) Bentonite: A clay over the centuries. Incontri Scentifici, V Corso di Formazione “Metodi di Analisi di Materiali Argillosi”. Gruppo Itaiano AIPEA, 263–304

    Google Scholar 

  • Nussbaum SR, Carter MJ, Fife CE, DaVanzo J, Haught R, Nusgart M, Cartwright D (2018) An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health 21:27–32

    Article  Google Scholar 

  • Nyanza EC, Joseph M, Premji SS, Thomas DS, Mannion C (2014) Geophagy practices and the content of chemical elements in the soil eaten by pregnant women in artisanal and small-scale gold mining communities in Tanzania. BMC Pregnancy Childbirth 14:144

    Article  Google Scholar 

  • O’Neill J (2016) Tackling drug-resistant infections globally: final report and recommendations of the review on antimicrobial resistance. Department of Health and the Wellcome Trust, UK

    Google Scholar 

  • Odabasi E, Gul H, Macit E (2007) Lipophilic components of different therapeutic mud species. J Altern Complement Med (Mary Ann Liebert, Inc.) 13:1115–1118

    Google Scholar 

  • Odabasi E, Turan M, Erdem H, Tekbas F (2008) Does mud pack treatment have any chemical effect? A randomized controlled clinical study. J Altern Complement Med 14(5):559–565

    Article  Google Scholar 

  • Odabasi E, Turan M, Erdem H, Pay S, Guleç M, Karagulle MZ (2009) The effect of mud pack treatment in knee osteoarthritis. Turk J Rheumatol 24:72–76

    Google Scholar 

  • Odangowei OI, Okiemute O (2015) Geophagic practice and its possible health implications: a review. J Sci Multidiscip Res 7:100–110

    Google Scholar 

  • Ökmen BM, Aksoy MK, Günes A, Erӧksüz R, Altan L (2017) Effectiveness of peloid therapy in carpal tunnel syndrome: a randomized controlled single blind study. Int J Biometeorol 61:1403–1410

    Article  Google Scholar 

  • Oliveira KCBF, Meneguin AB, Bertolino LC, Filho ECS, Leite RSA, Eiras C (2018) Immobilization of biomolecules on natural clay minerals for medical applications. Int J Adv Med Biotechnol 1(1)

    Google Scholar 

  • Onnainty R, Onida B, Páez P, Longhi M, Barresi A, Granero G (2016) Targeted chitosan-based bionanocomposites for controlled oral mucosal delivery of chlorhexidine. Int J Pharm 509:408–418

    Article  Google Scholar 

  • Otto CC, Haydel SE (2013a) Microbicidal clays: Composition, activity, mechanism of action, and therapeutic applications. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. FORMATEX, pp 1169–1180

    Google Scholar 

  • Otto CC, Haydel SE (2013b) Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures. PLOS ONE/wwwplosone 8(5):1–9

    Google Scholar 

  • Otto CC, Koehl JL, Solanky D, Haydel SE (2014) Metal ions, non metal-catalyzed oxidative stress, cause clay leachate antibacterial activity. Plos One 9:e115172

    Article  Google Scholar 

  • Otto CC, Kilbourne J, Haydel SE (2016) Natural and ion-exchanged illite clays reduce bacterial burden and inflammation in cutaneous methicillin-resistant Staphylococcus aureus infections in mice. J Med Microbiol 65:19–27

    Article  Google Scholar 

  • Owumi SE, Oyelere AK (2015) Determination of metal ion contents of two antiemetic clays used in geophagy. Toxicol Rep 2:928–932

    Article  Google Scholar 

  • Özkuk K, Gürdal H, Karagülle M, Barut Y, Eröksüz R, Karagülle MZ (2017) Balneological outpatient treatment for patients with knee osteoarthritis; an effective non-drug therapy option in daily routine? Int J Biometeorol 61:719–728

    Article  Google Scholar 

  • Ozumba UC, Ozumba N (2002) Patterns of helminth infection in the human gut at the University of Nigeria Teaching Hospital, Enugu, Nigeria. J Health Sci 48:263–268

    Article  Google Scholar 

  • Padilla FV, Torre AM (2006) La pica: Retrato de una entidad clinica poco conocida. Nutr Hosp 21:547–692

    Google Scholar 

  • Pandey A, Mittal A, Chauhan N, Alam S (2014) Role of surfactants as penetration enhancer in transdermal drug delivery. Mol Pharm Org Process Res 2:2

    Google Scholar 

  • Panico V, Imperato R (2009) The psoriasis: a therapeutic alternative with sulphurous water of Terme Capasso. J Water Wellness 1(1):39–50

    Google Scholar 

  • Panko AV, Kovzun IG, Ulberg ZR, Oleinik VA, Nikipelova EM, Babov KD (2016) Chapter 14: Colloid-chemical modification of peloids with nano-and microparticles of natural minerals and their practical use. In: Nanophysics, Nanophotonics, surface studies, and applications, Springer proceedings in Physics, vol 183, pp 163–177. https://doi.org/10.1007/978-3-319-30737-4-14

    Chapter  Google Scholar 

  • Pardo L, Domínguez-Maqueda M, Cecilia JA, Rodríguez MP, Osajima J, Miguel Moriñigo A, Franco F (2020) Adsorption of Salmonella in clay minerals and clay-based materials. Fortschr Mineral 10:130. https://doi.org/10.3390/min10020130

    Article  Google Scholar 

  • Parolo ME, Fernández LG, Zajonkovsky I, Sánchez MP, Baschini M (2011) Antibacterial activity of materials synthesized from clay minerals. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances, pp 144–151

    Google Scholar 

  • Pastor JM (1998) Termoterapia superficial. In: Martínez M, Pastor JM, Sendra F (eds) Manual de Medicina Fisica. Harcourt Brace, Madrid, pp 91–104

    Google Scholar 

  • Pedersen K, Motamedi M, Karnland O, Sanden T (2000) Mixing and sulphate reducing activity of bacteria in swelling, compacted bentonite clay under high-level radiowaste repository conditions. J Appl Microbiol 89:1038–1047

    Article  Google Scholar 

  • Pena-Ferreira MR, Santos D, Silva JBP, Amaral MH, Sousa Lobo JM, Gomes JHCA, Gomes CSF (2010a) Aplicação de argilas esmectíticas da ilha do Porto Santo em máscaras faciais. In: Maraver F, Carretero MI (eds) Libro de resúmenes del II Congreso Iberoamericano de Peloides. C.E.R.S-A, Madrid, pp 30–31

    Google Scholar 

  • Pena-Ferreira MR, Santos D, Silva JBP, Amaral MH, Sousa Lobo JM, Gomes JHCA, Gomes CSF (2010b) Desenvolvimento de formulações contendo argila esmectítica e areia carbonatada biogénica da ilha do Porto Santo para aplicação em máscaras de limpeza e branqueadoras. In: Maraver F, Carretero MI (eds) Libro de resúmenes del II Congreso Iberoamericano de Peloides. C.E.R.S-A, Madrid, pp 99–100

    Google Scholar 

  • Pena-Ferreira MR, Santos D, Silva JBP, Amaral MH, Sousa-Lobo JM, Gomes JH, Gomes CSF (2011) Aplicações de argilas esmectíticas da ilha do Porto Santo em máscaras faciais. Anales de Hidrologia Médica 4:67–79

    Google Scholar 

  • Pesciaroli C, Viseras C, Aguzzi C, Rodelas B, González-López J (2016) Study of the bacterial community structure and diversity during the maturation process of a therapeutic peloid. Appl Clay Sci 132:59–67

    Article  Google Scholar 

  • Photo-Jones E, Keane C, Jones AX, Stamatakis M, Robertson P, Hall AJ, Leanord A (2015) Testing Dioscorides’ medicinal clays for their antibacterial properties: the case of Samian Earth. J Archaeol Sci 57:257–267

    Article  Google Scholar 

  • Pierchala MK, Makaremi M, Tan HL, Pushpamalar J, Muniyandy S, Solouk A, Lee SM, Pasbakhsh P (2018) Nanotubes in nanofillers: antibacterial multilayered polylactic acid/halloysite/gentamicin membranes for bone regeneration application. Appl Clay Sci 160:95–105

    Article  Google Scholar 

  • Porlezza C (1965) Considerazione sui fanghi terapeutici (peloidi). Thermae II 2–3:6–57

    Google Scholar 

  • Pourabolghasem H, Ghorbanpour M, Shayegh R (2016) Antibacterial activity of copper-doped montmorillonite nanocomposites prepared by alkaline ion exchange method. J Phys Sci 27(2):1–12

    Article  Google Scholar 

  • Pozo M (2015) Importancia de la composición y propriedades físicas de las arcillas en la preparación de peloides. Balnea 10:187–206

    Google Scholar 

  • Pozo M, Carretero MI, Pozo E, Marin Rubi JA, Maraver F (2010) Caracterización mineralógica y química de peloides españoles y argentinos: Evaluación de elementos traza potencialmente tóxicos. En: Libro de Resúmenes del II Congreso Iberoamericano de Peloides (Maraver, F. and Carretero, editores), Lanjarón, 2010, 37–38

    Google Scholar 

  • Pozo M, Carretero MI, Maraver F, Pozo E, Gómez I, Armijo F (2013) Composition and physical-physicochemical properties of peloids used in Spanish spas: a comparative study. Appl Clay Sci 83-84:270–279

    Article  Google Scholar 

  • Prasad AS, Halsted JA, Nadimi M (1961) Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med 31:532–546

    Article  Google Scholar 

  • Price EW (1976) The association of endemic elephantiasis of the lower legs in East Africa with soil derived from volcanic rocks. Trans R Soc Trop Med Hyg:288–295

    Google Scholar 

  • Price EW (1977) The site of lymphatic blockade in endemic (non-filarial) elephantiasis of the lower legs. J Trop Med Hyg 80:230–237

    Google Scholar 

  • Price EW (1988) Non-Wlarial elephantiasis – confirmed as a geochemical disease, and re-named podoconiosis. Ethiop Med J 26:151–153

    Google Scholar 

  • Price EW, Bailey D (1984) Environmental factors in the etiology of endemic elephantiasis of the lower legs in tropical Africa. Trop Geogr Med 36:1–5

    Google Scholar 

  • Price R, Gaber BP, Lvov Y (2001) In vitro release characteristics of tetracycline HCI, khellin and nicotinamide adenine dinucleotide from halloysite, a cylindrical mineral. J Microencapsul 18:713–722

    Article  Google Scholar 

  • Quintela A, Terroso D, Almeida Salome FP, Reis P, Moura A, Correira A, Ferreira da Silva E, Forjaz V, Rocha F (2010) Geochemical and microbiological characterization of some Azorean volcanic muds after maturation. Res J Chem Environ 14:66–74

    Google Scholar 

  • Quintela A, Terroso D, da Silva EF, Rocha F (2012) Certification and quality criteria of peloids used for therapeutic purposes. Clay Miner 47:441–451

    Article  Google Scholar 

  • Quintela A, Terroso D, Costa C, Sá H, Nunes JC (2015) Rocha F (2015) characterization and evaluation of hydrothermally influenced clayey sediments from Caldeiras da Ribeira Grande fumarolic field (Azores archipelago, Portugal) used for aesthetic and pelotherapy purposes. Environ Earth Sci 73:2833–2842. https://doi.org/10.1007/s12665-014-3438-8

    Article  Google Scholar 

  • Rabea EI, Badawy ME, Stevens CV et al (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465

    Article  Google Scholar 

  • Rambaud A (1989) Les boues thermales. In: Chr H (ed) Crénotherapie et Réadaptation. Masson, Paris, pp 9–19

    Google Scholar 

  • Rambaud A, Rambaud J, Berger G, Pauvert B (1986) Mesure et étude du comportement thermique des boues thermales. J Fr Hydrol 17:392–302

    Google Scholar 

  • Rautureau M, Liewig N, Gomes CSF, Katouzian-Safadi M (2010) Argiles et Santé : Propriétés et Thérapies. Editions Médicales Internationales. Lavoisier, 184 pp. ISBN 978-2-7430-1202-1

    Google Scholar 

  • Rautureau M, Gomes CSF, Liewig N, Katouzian-Safadi M (2017) Clays and health: properties and therapeutic uses. Springer, Cham. ISBN: 978-3-319-42883-3

    Book  Google Scholar 

  • Rautureau M, Liewig N, Gomes CSF, Katouzian-Safadi M (2017) Clays and health: properties and therapeutic uses. Springer, Cham , 217pp. ISBN 978-3-319-42883-3. https://doi.org/10.1007/978-3-319-42884-0

  • Reichardt F (2008) Ingestion d’argile spontanée chez le rat: rôle dans la physiologie intestinale, Thèse, Université Louis Pasteur, Strasbourg

    Google Scholar 

  • Reid R (1992) Cultural and medical perspectives on geophagia. Med Anthropol 13:337–351

    Article  Google Scholar 

  • Reilly C, Henry J (2000) Geophagia: why do humans consume soil? Nutr Bull 25:141–144

    Article  Google Scholar 

  • Reinbacher R (2003) Healing Earths: the third leg of medicine. 1st Books Library, Bloomington, 244 pp

    Google Scholar 

  • Rondanelli M, Opizzi A, Perna S, Faliva MA, Buonocore D, Pezzoni G, Michelotti A, Marchetti R, Marzatico F (2012) Significant two-weeks clinical efficacy of an association between Massaciuccoli peat and sodium chloride water of Undulna Thermae measured on gynoid lipodystrophy in a group of overweight-female. Ann Ig 24(5):369–378

    Google Scholar 

  • Roques CF (2004) Mud therapy and health, proceedings of the 3rd symposium on thermal muds in Europe. Dax:75–77

    Google Scholar 

  • Roques CF (2015) Mud-therapy: data for clinical evidence. Balnea 10:57–62

    Google Scholar 

  • Rosenblat A (1964) Los otomacos y taparitas de los llanos de Venezuela. Estudio etnográfico y lingüístico. Instituto de antropología e historia, Tomo I

    Google Scholar 

  • Ross M, Nolan RP, Langer AM, Cooper WC (1993) Health effects of mineral dusts other than asbestos. In: Guthrie GD, Mossman BT (eds) Health effects of mineral dusts. Reviews in mineralogy, vol 8. Mineralogical Society of America, Washington, DC, pp 361–407

    Chapter  Google Scholar 

  • Rossainz-Castro LG, De la Rosa-Gomez I, Olguín MT, Alcantara-Diaz D (2016) Comparison between silver-and copper-modified zeolite-rich tuffs as microbicidal agents for Escherichia coli and Candida albicans. J Environ Manag 183:763–770. https://doi.org/10.1016/j.jenvman.2016.09.034

    Article  Google Scholar 

  • Rossi D, Jobstraibizer PG, Dal Bosco C, Bettero A (2013) A combined chemico-mineralogical and tensiometric approach for evaluation of Euganean Thermal Mud (ETM) quality. J Adhes Sci Technol 27:30–45

    Article  Google Scholar 

  • Roudsari MR, Karimi R, Sohrabvandi S, Mortazavian AM (2015) Health effects of probiotics on the skin. Crit Rev Food Sci Nutr 55:1219–1240

    Article  Google Scholar 

  • Rovira B, Gaitán F (2010) Los búcaros: de las Indias para el mundo. Canto Rodado 5:39–78

    Google Scholar 

  • Rowe JH (1946) Inca culture at the time of the Spanish conquet. In: Steward J (ed) The Andean civilizations, vol 143 (2). Bur Am Ethnol Washington DC, Bull, pp 183–330

    Google Scholar 

  • Ruiz-Hitsky E, Darder M, Alcântara A, Wicklein B, Aranda P (2015) Recent advances on fibrous Cla-based nanocomposites. Adv Polym Sci 267:39–86

    Article  Google Scholar 

  • Saathoff E, Olsen A, Kvalsvig JD, Geissler PW (2002) Geophagy and its association with geohelminth infections in rural school children from northern KwaZulu Natal, South Africa. Trans R Soc Trop Med Hyg 96:485–490

    Article  Google Scholar 

  • San Martin Bacaicoa J (1994) Peloides en general: Características físicas, efectos biológicos e indicaciones terapéuticas. In: Armijo M, San Martin J (eds) Curas balneárias y climáticas, Talasoterapia y Helioterapia. Complutense, Madrid, pp 315–331

    Google Scholar 

  • Sanchez CJ, Parras J, Carretero MI (2002) The effect of maturation upon mineralogical and physicochemical properties of illitic-smectitic clays for pelotherapy. Clay Miner 37:457–463

    Article  Google Scholar 

  • Sandri G, Bonferoni MC, Ferrari F, Rossi S, Aguzzi C, Mori M, Caramella C (2014) Montmorillonite-chitosan-silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: in vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydr Polym 102:970–977

    Article  Google Scholar 

  • Sandri G, Bonferoni MC, Rossi S, Ferrari F, Aguzzi C, Viseras C, Caramella C (2016) Clay minerals for tissue regeneration, repair, and engineering. In: Ågren MS (ed) Wound healing biomaterial. Elsevier, pp 385–402

    Google Scholar 

  • Sandri G, Aguzzi C, Rossi S, Bonferoni MC, Bruni G, Boselli C, Ferrari F (2017) Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater 57:216–224

    Article  Google Scholar 

  • Santaren J, Alvarez A (1994) Assessment of the health effects of mineral dusts: the sepiolite case. Indus Mineral 101-117, April

    Google Scholar 

  • Santos D, Silva JBP, Estanqueiro M, Gomes CSF, Sousa Lobo JM (2014) Research and development of cosmetic and medical peloids using geomaterials and biomaterials. Bol Soc Esp Hidrol Méd 29(2):230–231

    Article  Google Scholar 

  • Sarsan A, Akkaya N, Ozgen M, Yildiz N, Atalay NS, Ardic F (2012) Comparing the efficacy of mature mud pack and hot pack treatments for knee osteoarthritis. J Back Musculoskelet Rehabil 25(3):193–199

    Article  Google Scholar 

  • Saunders C, Padilha PC, Della LB et al (2009) Pica: epidemiology and association with pregnancy complications [in Portuguese]. Rev Bras Ginecol Obstet 31:440–446

    Article  Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO, CaO) by conductimetric assay. J Microbiol Methods 54:177–182

    Article  Google Scholar 

  • Schaefer H, Redelmeir TE (1996) Skin barrier: principles of Percutaneous Absorption. Karger S (ed), Zurich, Switzerland

    Google Scholar 

  • Schmidt-Malan SM, Caflisch KM, Mandrakar JN, Williams LB, Patel R (2018) Activity of antibacterial clay against drug-resistant bacteria. Abstracts of the Annual Meeting of the Clay Minerals Society

    Google Scholar 

  • Schnetz E, Fartasch M (2002) Microanalysis for the evaluation of penetration through the human skin barrier: a promising tool for future research? Eur J Pharm Sci 12:165–174

    Article  Google Scholar 

  • Schruazer GN, Shrestha KP (1990) Lithium in drinking water and the incidences of crimes, suicide and arrests related to drug addiction. Biol Trace Elem Res 25:105–113

    Article  Google Scholar 

  • Serofilli A (1994) La Fango - Balneoterapia. PICCIN, Padova, 130 pp

    Google Scholar 

  • Seseña N (1991) El búcaro de las Meninas. Velazquez y la arte de su tiempo. V Jornadas de Arte. C.S.I.C., pp 171−180

    Google Scholar 

  • Seseña N (2009) El vicio del barro. Ed. El Viso, Madrid

    Google Scholar 

  • Sharma S, Grewal S, Vakhlu J (2018) Phylogenetic diversity and metabolic potential of natural healing clay: evidence for the role of clay microbes in skin disease management. Arch Microbiol

    Google Scholar 

  • Sheppard SC (1998) Geophagy: who eats the soils and where do possible contaminants go? Environ Geol 33:109–114

    Article  Google Scholar 

  • Shinondo C, Mwikuma G (2009) Geophagy as a risk factor for helminth infections in pregnant women in Lusaka, Zambia. Med J Zambia 35:48–52

    Article  Google Scholar 

  • Silva JBP, Santos D, Amaral MH, Ramos P, Franco A, Gomes CSF, Lobo JM (2015) Casos de estudo de tratamento de patologia mamária com peloide terapêutico. Balnea 10:120–122

    Google Scholar 

  • Sizaire V, Nackers F, Comte E, Portaels F (2006) Mycobacterium ulcerans infection: control, diagnosis, and treatment. Lancet Infect Dis 6(5):288–296

    Article  Google Scholar 

  • Soria CO, Vela ML, Jalil MER (2018) “Copahue: La Ciencia, Lo Magico y El Arte de Curar”. Repositorio Relibro, Universidad Nacional del Comahue, 170pp. ISBN 978-987-783-027-9

    Google Scholar 

  • Spilioti E, Vargiami M, Letsiou S, Gardikis K, Sygouni V, Koutsoukos P, Chinou I, Kassi E, Moutsatsou P (2017) Biological properties of mud extracts derived from various spa resorts. Environ Geochem Health 39:821–833

    Article  Google Scholar 

  • Steinstand S (2012) Transdermal delivery of water-soluble molecules into human skin MSc thesis, Norwegian University of Science and Technology (NTNU), Trondheim, 131pp

    Google Scholar 

  • Stokes T (2006) The earth eaters. Nature 444(30):543–544

    Article  Google Scholar 

  • Suárez M, González P, Dominguez R, Bravo A, Melián C, Perez M (2011) Identification of organic compounds in San Diego de los Baños peloid (Pinar del Rio, Cuba). J Altern Complement Med 17(2):155–165

    Article  Google Scholar 

  • Sugawara N, Yaui-Furukori N, Ishii N, Iwata N, Terao T (2013) Lithium in tap water and suicide mortality in Japan. Int J Environ Res Public Health 10(11):6044–6048

    Article  Google Scholar 

  • Summa V, Tateo F (1999) Geochemistry of two peats suitable for medical uses and their behaviour during leaching. Appl Clay Sci 15:477–489

    Article  Google Scholar 

  • Suresh R, Borkar SN, Sawant VA, Shende VS, Dimble SK (2010) Nanoclay drug delivery systems. Int J Pharm Sci Nanotechnol 3(2):901–905

    Google Scholar 

  • Svensson SL, Behroozian S, Xu W, Surette MG, Li L, Davies J (2017) Kisameet glacial clay: An unexpected source of bacterial. Diversity 8(3):e00590–e00517

    Google Scholar 

  • Syafawani N, Nizam NA, Chun C (2016) Antimicrobial activity of copper-kaolinite and surfactant modified copper-kaolinite against gram-positive and gram-negative bacteria. Jurnal Teknologi (Sciences and Engineering) 76(3–2):127–132

    Google Scholar 

  • Tan J, Zhu W, Wang W, Li R, Hou S, Wang D, Yang L (2002) Selenium in soil and endemic diseases in China. Sci Total Environ 284:227–235

    Article  Google Scholar 

  • Tanojo H, Boelsma E, Junginger H, Ponec M, Boddé H (1999) In vivo human skin permeability enhancement by oleic acid: a laser Doppler velocimetry study. J Control Release 58:97–104

    Article  Google Scholar 

  • Tateo F, Summa V (2007) Element mobility in clays for healing use. Appl Clay Sci 36:64–76

    Article  Google Scholar 

  • Tateo F, Summa V, Bonelli GC, Bentivenga G (2001) Mineralogy and geochemistry of herbalist's clays for internal use: simulation of the digestive process. Appl Clay Sci 20:97–109

    Article  Google Scholar 

  • Tateo F, Summa V, Gianossi ML, Ferraro G (2006) Healing clays: mineralogical and geochemical constraints on the preparation of clay-water suspension (“argillic water”). Appl Clay Sci 33:181–194

    Article  Google Scholar 

  • Tateo F, Ravaglioli A, Andreoli C, Bonina F, Coiro V, Degetto S, Giaretta A, Menconi Orsini A, Puglia C, Summa V (2009) The in vitro percutaneous migration of chemical elements from a thermal mud for healing use. Appl Clay Sci 44:83–94

    Article  Google Scholar 

  • Tayie F (2004) Pica: motivating factors and health issues. Afr J Food Agric Nutr Dev 4(1) http://www.bioline.org.br/request?nd04010

  • Tefner IK (2014) Effects of balneotherapy on musculoskeletal disorders with chronic pain, PhD thesis, Univ. Szeged, Hungary, 80 pp

    Google Scholar 

  • Teixeira F (2015) Da peloterapia tradicional à peloterapia científica. Balnea 10:63–81

    Google Scholar 

  • Teixeira F, Maraver F, Crespo PV, Campos A (1996) Estudo microanalítico da materia orgánica de águas sulfúreas portuguesas e espanholas. Pub Inst Clim Hidrol da Univ de Coimbra 34, 1–5

    Google Scholar 

  • Tejero Garcia P (2014) Peloterapia en cosmetica y medicina estética. In: Peloterapia: Aplicaciones médicas y cosméticas de fangos termales. 185–190, Hernandez Torres A (coordinador), Fundación Bilbilis, Madrid

    Google Scholar 

  • Tenti S, Cheleschi S, Galeazzi M, Fioravanti A (2014) Spa therapy: can bea valid option for treating knee osteoarthritis? Int J Biometeorol. https://doi.org/10.1007/s00484-014-0913-6.5

  • Thomson CD (2003) Selenium physiology. In: Encyclopedia of food science and nutrition, 2nd edn

    Google Scholar 

  • Tolomio C, Ceschi-Berrini C, Moschin E, Galzigna L (1999) Colonization by diatoms and antirheumatic activity of thermal mud. Cell Biochem Funct 17(1):29–33

    Article  Google Scholar 

  • Tolomio C, Berrini CC, De Appolonia F, Galzigna L, Masiero L, Moro I, Moscin E (2002) Diatoms in the thermal mud of Abano Terme, Italy (maturation period). Arch Hydrobiol Algol Stud 143:11–27

    Google Scholar 

  • Tolomio C, De Appolonia F, Moro I, Berrini CC (2004) Thermophilic microalgae growth on different substrates and at different temperature in experimental tanks in Abano Terme (Italy). Algol Stud 111:145–157

    Google Scholar 

  • Tong G, Yulong M, Peng G, Zirong X (2005) Antibacterial effects of the Cu(II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesuis. Vet Microbiol 105:113–122

    Article  Google Scholar 

  • Top A, Ulku S (2004) Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. Appl Clay Sci 27:13–19. https://doi.org/10.1016/j.clay.2003.12.002

    Article  Google Scholar 

  • Torrella F (2006) La sulfuraria de Baños de Montemayor (Cáceres): características morfológicas y funcionales de la comunidad microbiana constituyente. An Hidrol Med 1:61–78

    Google Scholar 

  • Tricás JM, Fortún M, Jiménez S, Estébanes E (2014) Fisioterapia: fundamentación fisioterápica de la utilización de peloides. In: Hernandez A (coord.). Peloterapia: aplicaciones médicas y cosméticas de fangos termales, Madrid, Fundación Bilbilis, 251–260

    Google Scholar 

  • Trivedi TH, Daga GL, Yeolekar ME (2005) Geophagia leading to hypokalemic quadriparesis in a postpartum patient. J Assoc Physicians India 53:205–207

    Google Scholar 

  • Tsegay G, Tamiru A, Amberbir T et al (2016) Willingness to pay for footwear, and associated factors related to podoconiosis in northern Ethiopia. Int Health:345–353

    Google Scholar 

  • Tserenpil S, Dolman G, Voronkov MG (2010) Organic matters in healing muds from Mongolia. Appl Clay Sci 49(1–2):55–63

    Article  Google Scholar 

  • Tully J, Yendluri R, Lvov Y (2016) Clay nanotubes for enzyme immobilization. Biomacromolecules 17:615–621

    Article  Google Scholar 

  • Turpin J (2004) Baked clay balls and earth ovens in south Central Texas. Curr Archeol Texas 6(2):9–14. https://www.thc.state.tx.us/archeology/aapdfs/CAT-Nov-04.pdf

    Google Scholar 

  • Ubogui J, Rodríguez-Lupo L, Ficoseco H, Sevinsky L, Kien K, Stengel F (1991) Terapéutica no convencional de la Psoriasis en las termas de Copahue (Neuquén Argentina). Experiencia preliminar. Arch Arg Dermatol 41:25–39

    Google Scholar 

  • Ubogui J, Stengel FM, Kien MC, Sevinsky L, Rodríguez Lupo L (1998) Thermalism in argentine: alternative or complementary dermatologic therapy. Arch Dermatol 134(11):1411–1412

    Article  Google Scholar 

  • Untura M, De Michele D, Giacomino M, Belderrain A (2007) Niveles plasmáticos de interleukina 1- β, cortisol, 17- β estradiol y ESG tras fangoterapia y fisioterapia en mujeres postmenopáusicas con artrosis. An Hidrol Med 2:65–74

    Google Scholar 

  • Unuabonah EI, Taubert A (2014) Clay-polymer nanocomposites (CPNs): adsorbents of the future for water treatment. Appl Clay Sci 99:83–92

    Article  Google Scholar 

  • Unuabonaha EI, Ugwujaa CG, Omorogiea MO, Adewuyia A, Oladojab NA (2018) Clays for efficient disinfection of Bacteria in water. Appl Clay Sci 151:211–223

    Article  Google Scholar 

  • Vaht M, Birkenfeldt R, Ubner M (2008) An evaluation of the effect of differing lengths of spa therapy upon patients with osteoarthritis (OA). Complement Ther Clin Pract 14:60–64

    Article  Google Scholar 

  • Valencia HC, Fernández NJ, Londoño SC, Cucunubá Z, Reyes HP, Lopez PM (2008, 2008) Geological influences on the soil, contributions to infections transmitted by helminths in Colombia. In: Proceedings of the international geological congress, vol 33, Oslo

    Google Scholar 

  • Varga C (2010) Problems with classification of spa waters used in balneology. Health 2(11):1260–1263. https://doi.org/10.4236/health.2010.211187

    Article  Google Scholar 

  • Varga C (2016) On the proper study design applicable to experimental balneology. Int J Biometeorol 60:1307–1309. https://doi.org/10.1007/s00484-015-1113-8

    Article  Google Scholar 

  • Velasco MVR, Zague V, Dario M, Nishikawa DO, Pinto C, Almeida MM, Tossini G, Vieira-Coelho A, Baby AR (2016) Characterization and short-term clinical study of clay facial mask. Rev Ciencias Farmaceuticas Básica e Aplicada 37(1)

    Google Scholar 

  • Valenzuela AD (1967) Comer terra. Boletín Cultural y Bibliográfico 10(7):1529–1540

    Google Scholar 

  • Veniale F (1998) Applicazioni e utilizzazioni medico-sanitarie di materiali argillosi (naturali e modificati). Corso di Specializzazione, Gruppo Italiano AIPEA, pp 1–40

    Google Scholar 

  • Veniale F (editor) (1999) Argille curative per fanghi peloidi termali e per trattamienti dermatologici e cosmetici. Symp.Gruppo Ital. AIPEA, Montecatini Terme/PT, Miner. Petrogr. Acta, v. XLII, 261–335

    Google Scholar 

  • Veniale F (2007) Applicazioni e utilizzazioni medico-sanitarie di material argillosi naturali e modificati. In: Morandi N, Dondi M (eds) Argille e minerali delle argille. Guida alla definizione di caratteristiche e proprietà per gli usi industriali. Corso di Formazione, Gruppo Italiano AIPEA, Rimini, pp 205–239

    Google Scholar 

  • Veniale F (ed.) (1996) Atti di Convegno Argille Curative. Associazione Medica Italiana di Idroclimatologia, Talassologia e Terapia Física. Gruppo Italiano AIPEA Salice Terme/PV, 145 pp

    Google Scholar 

  • Veniale F, Barberis E, Carcangiu G, Morandi N, Setti M, Tamanini M, Tessier D (2004) Formulation of muds for pelotherapy: effects of “maturation” by different mineral waters. Appl Clay Sci 25:135–148

    Article  Google Scholar 

  • Veniale F, Bettero A, Jobstraibizer P, Setti M (2007) Thermal muds: perspectives of innovation. Appl Clay Sci 36:141–147

    Article  Google Scholar 

  • Vergaro V, Lvov YM, Leporatti S (2012) Halloysite clay nanotubes for resveratrol delivery in cancer cells. Macromol Biosci 12(9):1265–1271

    Article  Google Scholar 

  • Vermeer DE (1986) Geophagy in the American south. Bull Shreveport Med Soc 37:38

    Google Scholar 

  • Vermeer DE, Ferrell RE Jr (1985) Nigerian geophagical clay: a traditional anti-diarrheal pharmaceutical. Science 227:634–636

    Article  Google Scholar 

  • Vermeer DE, Frate DA (1979) Geophagia in rural Mississippi: environmental and cultural contexts and nutritional implications. Am J Clin Nutr 32(10):2129–2135

    Article  Google Scholar 

  • Vincevica-Gaile Z, Stankevica K (2018) Impact of micro- and macroelement content on potential use of freshwater sediments (gyttja) derived from lakes of eastern Latvia. Environ Geochem Health 40:1725–1738. https://doi.org/10.1007/s10653-017-9912-y

    Article  Google Scholar 

  • Viseras C, López-Galindo A (1999) Pharmaceutical applications of some Spanish clays (sepiolite, palygorskite, bentonite): some pre-formulation studies. Appl Clay Sci 14:69–82

    Article  Google Scholar 

  • Viseras C, Cultrone G, Cerezo P, Aguzzi C, Baschini M, Valle J, Lopez-Galindo A (2006) Characterization of northern Patagonian bentonites for pharmaceutical uses. Appl Clay Sci 31:272–281

    Article  Google Scholar 

  • Viseras C, Aguzzi C, Cerezo P, Lopez-Galindo A (2007) Uses of clay minerals in semisolid health care and therapeutic products. Appl Clay Sci 36:37–50

    Article  Google Scholar 

  • Viseras C, Aguzzi C, Cerezo P, Bedmar MC (2008) Biopolymer–clay nanocomposites for controlled drug delivery. Mater Sci Technol 24:1020–1026

    Article  Google Scholar 

  • Viseras C, Cerezo P, Sanchez R, Salcedo I, Aguzzi C (2010) Current challenges in clay minerals for drug deliver. Appl Clay Sci 48:291–295

    Article  Google Scholar 

  • Viseras C, Aguzzi C, Cerezo P (2015) Medical and health applications of natural mineral nanotubes. In: Natural mineral nanotubes: properties and applications. Apple Academic Press, Oakville/Waretown, pp 437–448

    Chapter  Google Scholar 

  • Viseras C, Carazo E, Borrego-Sánchez A, Garcia-Villén F, Sánchez-Espejo R, Cerezo P, Aguzzi C (2019) Clay minerals in skin drug delivery. Clay Clay Miner. https://doi.org/10.1007/s42860-018-0003-7

  • Vreca P, Dolenec T (2005) Biogeochemical estimation of copper contamination in the healing mud from Makirina Bay. Central Adriatic Environ Int 31:53–61

    Article  Google Scholar 

  • Wagner JC, McConnochie K, Gibbs AR, Pooley FD (1998) Chapter 7: Clay minerals and health. In: Parker et al (eds) Environmental interactions of clays. Springer, Berlin

    Google Scholar 

  • Wang X, Dong H, Zeng Q, Xia Q, Zhang L, Zhou Z (2017) Reduced iron-containing clay minerals as antibacterial agents. Environ Sci Technol 51:2401–2408

    Google Scholar 

  • Welsh J (2011) Dirty truth: humans eat dirt to shield the stomach. Retrieved from Live Science: https://www.livescience.com/14463-humans-eating-dirt-stomachs.html

  • WHO (2005) Bentonite, kaolin and selected clay minerals, Environmental health criteria 231. IPCS (International Program of Chemical Safety

    Google Scholar 

  • WHO (2011) Guidelines for drinking water quality, 4th edn. WHO, Geneva

    Google Scholar 

  • Wigler I, Elkayam O, Paran D, Yaron M (1995) Spa therapy for gonarthrosis: a prospective study. Rheumatol Int 15(2):65–68

    Article  Google Scholar 

  • Wiley AS, Katz SH (1998) Geophagy in pregnancy: a test of a hypothesis. Curr Anthropol 39:532–545

    Article  Google Scholar 

  • Wilkinson JB, Moore R (1982) Face packs and masks. In: Wilkinson JB, Moore RJ (eds) Harry’s cosmeticology, 7th edn. Longman Group, London

    Google Scholar 

  • Williams LB (2011) Antibacterial clays and their potential for medicinal applications. GeoMed2011, 4th International Conference on Medical Geology, Book of Abstracts, III-IV

    Google Scholar 

  • Williams LB (2017) Geomimicry: harnessing the antibacterial action of clays. Clay Miner 52:1–24

    Article  Google Scholar 

  • Williams LB, Haydel SE (2010) Evaluation of the medicinal use of clay minerals as antibacterial agents. Inst Geol Rev 52:745–770

    Article  Google Scholar 

  • Williams LB, Hillier S (2014) Kaolins and health: from first grade to first aid. Elements 10:207–211

    Article  Google Scholar 

  • Williams LB, Holland M, Eberl DD, Brunet T, De Courrsou LB (2004) Killer clays! Natural antibacterial clay minerals. Mineral Soc Bull:3–8

    Google Scholar 

  • Williams LB, Haydel SE, Giese R, Eberl DD (2008) Chemical and mineralogical characteristics of French green clays used for healing. Clay Clay Miner 56:437–452

    Article  Google Scholar 

  • Williams LB, Haydel SE, Ferrell R (2009) Bentonite, Bandaids and Borborygmi. Elements 5:99–104

    Article  Google Scholar 

  • Williams LB, Metge D, Eberl DD, Harvey R, Turner A, Prapaipong P, Poret-Peterson A (2011) What makes natural clay antibacterial? Environ Sci Technol 45:3768–3773

    Article  Google Scholar 

  • Wilson MJ (2003) Clay mineralogical and related characteristics of geophagic materials. J Chem Ecol 29:1525–1547

    Article  Google Scholar 

  • Wilson I, Keeling J (2016) Global occurrences, geology and characteristics of tubular halloysite deposits. Clay Miner 51(3):309–324

    Article  Google Scholar 

  • Wittman W, Fellingham SA (1970) Unusual hip disease in remote part of Zululand. Lancet 1:842–843

    Article  Google Scholar 

  • Worrall WE (1975) Clays and ceramic raw materials. Applied Science Publishers Ltd, London, 203pp

    Google Scholar 

  • Woywodt A, Kiss A (1999) Perforation of the sigmoid colon due to geophagia. Arch Surg, Chicago 134:88–89

    Article  Google Scholar 

  • Woywodt A, Kiss A (2002) Geophagia: the history of earth-eating. J R Soc Med 95:143–146

    Article  Google Scholar 

  • Xu J, Campbell JM, Zhang N, Hickey W, Sahai N (2012) Did mineral surface chemistry and toxicity contribute to evolution of microbial extracellular polymeric substances? Astrobiology 12(8):785–798

    Article  Google Scholar 

  • Ye Y, Zhou YH, Xia MS, Hu CH, Ling HF (2003) A new type of inorganic antibacterial material: Cu-bearing montmorillonite and discussion on its mechanism. J Inorg Mater 18:569–574

    Google Scholar 

  • Young SL (2010) Pica in pregnancy: new ideas about an old condition. Annu Rev Nutr 30:403–422

    Article  Google Scholar 

  • Young SL (2011) Craving earth. Columbia University Press, New York, 228 pp

    Book  Google Scholar 

  • Young SL, Wilson MJ, Miller D, Hillier S (2008) Toward a comprehensive approach to the collection and analysis of pica substances, with emphasis on geophagic materials. PLoS One 3:e3147

    Article  Google Scholar 

  • Young SL, Wilson MJ, Hillier S, Delbos E, Ali SM, Stolzfus R (2010a) Differences and commonalities in physical, chemical, and mineralogical properties of Zanzibari geophagic soils. J Chem Ecol 36:129–140

    Article  Google Scholar 

  • Young SL, Khalfan SS, Farag TH, Kavle JA, Ali SM, Hajji H, Rasmussen KM, Pelto GH, Tielsch JM, Stoltzfus RJ (2010b) Association of Pica with Anemia and gastrointestinal distress among pregnant women in Zanzibar, Tanzania. Am J Trop Med Hyg 83(1):144–151

    Article  Google Scholar 

  • Yuan P, Tan D, Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112–113:75–93

    Article  Google Scholar 

  • Yücesoy H, Geçmen I, Adıgüzel T, Karagülle M, Karagülle MZ (2019) Efficacy of balneological outpatient treatment (hydrotherapy and peloidotherapy) for the management of chronic low back pain: a retrospective study. Int J Biometeorol 63:351–357

    Article  Google Scholar 

  • Yuen JWM, Chung TWK, Loke AY (2015) Methicillin-resistant Staphylococcus aureus (MRSA) contamination in bedside surfaces of a hospital ward and the potential effectiveness of enhanced disinfection with an antimicrobial polymer surfactant. Int J Environ Res Public Health 12:3026–3041

    Article  Google Scholar 

  • Yvon J, Ferrand T (1996) Preparation ex-situ de peloids: Proprietés thermiques, mécaniques et d’échanges. Proc. Meeting “Argille Curative”, Salice Terme/PV, Gruppo Ital. AIPEA, 67–74

    Google Scholar 

  • Zague V, Almeida Silva D, Baby AR, Kaneko TM, Velasco MVR (2008) Clay facial masks: physicochemical stability at different storage temperatures. J Cosmet Sci 29(6):488–489. https://doi.org/10.1111/j.1468-2494.2007.00391_5.x

    Article  Google Scholar 

  • Zarate-Reyes L, López-Pacheco C, Nieto-Camacho A, Palacios E, López-Vidales V, Kaufhold S, Ufer K, Garcia-Zepeda E, Cervini-Silva J (2017a) Antibacterial clay against gram-negative antibiotic resistant bacteria. J Hazard Mater 342:625–632

    Article  Google Scholar 

  • Zarate-Reyes L, López-Pacheco C, Nieto-Camacho A, Apán MTR, Palacios E, López-Vidales V, Kaufhold S, Ufer K, Garcia-Zepeda E, Cervini-Silva J (2017b) Naturally occurring layered-mineral magnesium as a bactericidal against Escherichia coli. Appl Clay Sci 149:87–96

    Article  Google Scholar 

  • Zatta P, Kiss T, Suwalsky M, Berthon G (2002) Aluminium (III) as a promoter of cellular oxidation. Coord Chem Rev 228(2):271–284

    Article  Google Scholar 

  • Zhang BJ, Yang LS, Wang WY et al (2010) Quantification and comparison of soil elements in the Tibetan Plateau Kashin-Beck disease area. Biol Trace Elem Res 138(1–3):68–78

    Google Scholar 

  • Zhang BJ, Yang LS, Wang WY et al (2011) Environmental selenium in the Kaschin–Beck disease area, Tibetan Plateau, China. Environ Geochem Health 33(5):495–501

    Article  Google Scholar 

  • Zhou H, Wang T, Li Q, Li D (2018) Prevention of Keshan disease by selenium supplementation: a systematic review and meta-analysis. Biol Trace Elem Res 186:98–105

    Article  Google Scholar 

  • Ziegler JL (1997) Geophagy: a vestige of paleonutrition. Tropical Med Int Health 2:609–611

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso S. F. Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomes, C.S.F., Rautureau, M., Gomes, J.H.C., Silva, E.A.F. (2021). Interactions of Clay and Clay Minerals with the Human Health. In: Gomes, C., Rautureau, M. (eds) Minerals latu sensu and Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-65706-2_7

Download citation

Publish with us

Policies and ethics