Skip to main content

Advanced Fermentation Strategies to Enhance Lipid Production from Lignocellulosic Biomass

  • Chapter
  • First Online:
Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities
  • 366 Accesses

Abstract

This chapter discusses the related researches on microbial lipid biosynthetic processes, the inhibitor tolerance of lipid-producing microorganisms, and high cell density culture strategies for lipid production from lignocellulosic biomass. The aspects covered here mainly focused on the elucidation of lipid accumulations of oleaginous microorganisms in different fermentation modes including batch, fed-batch, and continuous cultivation coupled with multistage strategies for increasing cell densities of oleaginous microbes thereby improving lipid yield, titer, and productivity. Furthermore, because of the inhibitors generated during hydrolysis processes as by-products that influence the lipid biosynthesis, the strategies to enhance the lipid content through metabolic engineering approach including blocking of competing pathways and multigene methods were discussed in this chapter. It is suggested that the efficiency of the lignocellulosic lipid-based biorefinery process would be greatly improved if the cultivation platform of oleaginous microorganisms could integrate both micro-manipulations for the gene expression and fermentation strategies with the online control-feedback system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kosa, M., & Ragauskas, A. J. (2011). Lipids from heterotrophic microbes: Advances in metabolism research. Trends in Biotechnology, 29(2), 53–61.

    Article  Google Scholar 

  2. Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 86(11), 807–815.

    Article  Google Scholar 

  3. Garay, L. A., Boundy-Mills, K. L., & German, J. B. (2014). Accumulation of high-value lipids in single-cell microorganisms: A mechanistic approach and future perspectives. Journal of Agricultural and Food Chemistry, 62(13), 2709–2727.

    Article  Google Scholar 

  4. Zhang, H., Wu, C., Wu, Q., Dai, J., & Song, Y. (2016). Metabolic flux analysis of lipid biosynthesis in the yeast Yarrowia lipolytica using 13C-labeled glucose and gas chromatography-mass spectrometry. PLoS One, 11(7), e0159187.

    Article  Google Scholar 

  5. Pereira, G., Finco, A. M., Letti, L., Karp, S., Pagnoncelli, M., Oliveira, J., Thomaz-Soccol, V., Brar, S., & Soccol, C. (2018). Microbial metabolic pathways in the production of valued-added products. In S. K. Brar, R. K. Das, & S. J. Sarma (Eds.), Microbial sensing in fermentation (pp. 137–167). Hoboken: Wiley.

    Chapter  Google Scholar 

  6. Beopoulos, A., Nicaud, J.-M., & Gaillardin, C. (2011). An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Applied Microbiology and Biotechnology, 90(4), 1193–1206.

    Article  Google Scholar 

  7. Ratledge, C., & Wynn, J. P. (2002). The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. In A. I. Laskin, J. W. Bennett, & G. M. Gadd (Eds.), Advances in applied microbiology (pp. 1–52). Amsterdam: Academic Press.

    Google Scholar 

  8. Passoth, V. (2017). Lipids of yeasts and filamentous fungi and their importance for biotechnology. In A. A. Sibirny (Ed.), Biotechnology of yeasts and filamentous fungi (pp. 149–204). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  9. Davis, M. S. S. J., & Cronan, J. E., Jr. (2000). Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. Journal of Biological Chemistry, 275(37), 28593–28598.

    Article  Google Scholar 

  10. Liang, M. H. J. J. G. (2013). Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Progress in Lipid Research, 52(4), 395–408.

    Article  Google Scholar 

  11. Metz, J. G., Roessler, P., Facciotti, D., Levering, C., Dittrich, F., Lassner, M., Valentine, R., Lardizabal, K., Domergue, F., Yamada, A., Yazawa, K., Knauf, V., & Browse, J. (2001). Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science, 293(5528), 290–293.

    Article  Google Scholar 

  12. Ferguson, J. J. A., Dias, C. B., & Garg, M. L. (2016). Omega-3 polyunsaturated fatty acids and hyperlipidaemias. In M. V. Hegde, A. A. Zanwar, & S. P. Adekar (Eds.), Omega-3 fatty acids: Keys to nutritional health (pp. 67–78). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  13. Ouyang, L.-L., Chen, S.-H., Li, Y., & Zhou, Z.-G. (2013). Transcriptome analysis reveals unique C4-like photosynthesis and oil body formation in an arachidonic acid-rich microalga Myrmecia incisa Reisigl H4301. BMC Genomics, 14(1), 396.

    Article  Google Scholar 

  14. Ma Y.-L. (2006). Microbial oils and its research advance. Chinese Journal of Bioprocess Engineering, 4(4), 7–11.

    Google Scholar 

  15. Athenstaedt, K. D., & G. (1999). Phosphatidic acid, a key intermediate in lipid metabolism. European Journal of Biochemistry, 266(1), 1–16.

    Article  Google Scholar 

  16. Coleman, R. A., & Lee, D. P. (2004). Enzymes of triacylglycerol synthesis and their regulation. Progress in Lipid Research, 43(2), 134–176.

    Article  Google Scholar 

  17. Galán, B., Santos-Merino, M., Nogales, J., de la Cruz, F., & García, J. L. (2019). Microbial oils as nutraceuticals and animal feeds. In H. Goldfine (Ed.), Health consequences of microbial interactions with hydrocarbons, oils, and lipids (pp. 1–45). Cham: Springer International Publishing.

    Google Scholar 

  18. Minskoff, S. A., Racenis, P. V., Granger, J., Larkins, L., Hajra, A. K., & Greenberg, M. L. (1994). Regulation of phosphatidic acid biosynthetic enzymes in Saccharomyces cerevisiae. Journal of Lipid Research (USA), 35(12), 2254–2262.

    Article  Google Scholar 

  19. Liang, M.-H., & Jiang, J.-G. (2013). Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Progress in Lipid Research, 52(4), 395–408.

    Article  Google Scholar 

  20. Jin, M., Slininger, P. J., Dien, B. S., Waghmode, S., Moser, B. R., Orjuela, A., Sousa, L. C., & Balan, V. (2015). Microbial lipid-based lignocellulosic biorefinery: Feasibility and challenges. Trends in Biotechnology, 33(1), 43–54.

    Article  Google Scholar 

  21. Sousa, F. P., Silva, L. N., de Rezende, D. B., de Oliveira, L. C. A., & Pasa, V. M. D. (2018). Simultaneous deoxygenation, cracking and isomerization of palm kernel oil and palm olein over beta zeolite to produce biogasoline, green diesel and biojet-fuel. Fuel, 223, 149–156.

    Article  Google Scholar 

  22. Huang, W.-D., & Zhang, Y. H. P. (2011). Analysis of biofuels production from sugar based on three criteria: Thermodynamics, bioenergetics, and product separation. Energy & Environmental Science, 4(3), 784–792.

    Article  Google Scholar 

  23. Chang, Y.-H., Chang, K.-S., Lee, C.-F., Hsu, C.-L., Huang, C.-W., & Jang, H.-D. (2015). Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source. Biomass and Bioenergy, 72, 95–103.

    Article  Google Scholar 

  24. Anschau, A., Xavier, M. C. A., Hernalsteens, S., & Franco, T. T. (2014). Effect of feeding strategies on lipid production by Lipomyces starkeyi. Bioresource Technology, 157, 214–222.

    Article  Google Scholar 

  25. Fei, Q., O’Brien, M., Nelson, R., Chen, X., Lowell, A., & Dowe, N. (2016). Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source. Biotechnology for Biofuels, 9(1), 1–12.

    Article  Google Scholar 

  26. Economou, C. N., Aggelis, G., Pavlou, S., & Vayenas, D. V. (2011). Single cell oil production from rice hulls hydrolysate. Bioresource Technology, 102(20), 9737–9742.

    Article  Google Scholar 

  27. Moreton, R. S. (1988). Physiology of lipid accumulation yeast. In R. S. Moreton (Ed.), Single cell oil. London: Longman Higher Education Division.

    Google Scholar 

  28. Zhao, X., Hu, C., Wu, S., Shen, H., & Zhao, Z. K. (2011). Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategies. Journal of Industrial Microbiology & Biotechnology, 38(5), 627–632.

    Article  Google Scholar 

  29. Hernández-Beltrán, J. U., & Hernández-Escoto, H. (2018). Enzymatic hydrolysis of biomass at high-solids loadings through fed-batch operation. Biomass and Bioenergy, 119, 191–197.

    Article  Google Scholar 

  30. Li, Y., Zhao, Z., & Bai, F. (2007). High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 41(3), 312–317.

    Article  Google Scholar 

  31. Liu, Y., Wang, Y., Liu, H., & Zhang, J. a. (2015). Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy. Bioresource Technology, 180, 32–39.

    Article  Google Scholar 

  32. Kim, B. S., Lee, S. C., Lee, S. Y., Chang, H. N., Chang, Y. K., & Woo, S. I. (1994). Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnology and Bioengineering, 43(9), 892.

    Article  Google Scholar 

  33. Salehmin, M. N. I., Annuar, M. S. M., & Chisti, Y. (2013). High cell density fed-batch fermentations for lipase production: Feeding strategies and oxygen transfer. Bioprocess and Biosystems Engineering, 36(11), 1527–1543.

    Article  Google Scholar 

  34. Hassan, M., Blanc, P. J., Granger, L. M., Pareilleux, A., & Goma, G. (1996). Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochemistry, 31(4), 355–361.

    Article  Google Scholar 

  35. Wiebe, M. G., Koivuranta, K., Penttilä, M., & Ruohonen, L. (2012). Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnology, 12(1), 26.

    Article  Google Scholar 

  36. Slininger, P. J., Dien, B. S., Kurtzman, C. P., Moser, B. R., Bakota, E. L., Thompson, S. R., O’Bryan, P. J., Cotta, M. A., Balan, V., Jin, M., Sousa, L. C., & Dale, B. E. (2016). Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnology and Bioengineering, 113(8), 1676–1690.

    Article  Google Scholar 

  37. Wang, T., Tian, X., Liu, T., Wang, Z., Guan, W., Guo, M., Chu, J., & Zhuang, Y. (2017). A two-stage fed-batch heterotrophic culture of Chlorella protothecoides that combined nitrogen depletion with hyperosmotic stress strategy enhanced lipid yield and productivity. Process Biochemistry, 60, 74–83.

    Article  Google Scholar 

  38. Fei, Q., Wewetzer, S. J., Kurosawa, K., Rha, C., & Sinskey, A. J. (2015). High-cell-density cultivation of an engineered Rhodococcus opacus strain for lipid production via co-fermentation of glucose and xylose. Process Biochemistry, 50(4), 500–506.

    Article  Google Scholar 

  39. Fu, R., Fei, Q., Shang, L., Brigham, C. J., & Chang, H. N. (2018). Enhanced microbial lipid production by Cryptococcus albidus in the high-cell-density continuous cultivation with membrane cell recycling and two-stage nutrient limitation. Journal of Industrial Microbiology & Biotechnology, 45(12), 1045–1051.

    Article  Google Scholar 

  40. Karamerou, E. E., Theodoropoulos, C., & Webb, C. (2017). Evaluating feeding strategies for microbial oil production from glycerol by Rhodotorula glutinis. Engineering in Life Sciences, 17(3), 314–324.

    Article  Google Scholar 

  41. Chang, H. N., Kim, N.-J., Kang, J., Jeong, C. M., J-d-r, C., Fei, Q., Kim, B. J., Kwon, S., Lee, S. Y., & Kim, J. (2011). Multi-stage high cell continuous fermentation for high productivity and titer. Bioprocess and Biosystems Engineering, 34(4), 419–431.

    Article  Google Scholar 

  42. Chang, H. N., Jung, K., Choi, J.-d.-r., Lee, J. C., & Woo, H.-C. (2014). Multi-stage continuous high cell density culture systems: A review. Biotechnology Advances, 32(2), 514–525.

    Article  Google Scholar 

  43. Chang, H. N. F. Q., Choi, J. D. R., & Jung, K. S. (2011b). Economic evaluation of heterotropic microbial lipid (C. albidus) production using low-cost volatile fatty acids in MSC-HCDC bioreactor system. BIT’s first annual congress of bioenergy, pp 0425–0429.

    Google Scholar 

  44. Fei, Q., Chang, H. N., Shang, L., J-d-r, C., Kim, N., & Kang, J. (2011). The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresource Technology, 102(3), 2695–2701.

    Article  Google Scholar 

  45. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresource Technology, 74(1), 25–33.

    Article  Google Scholar 

  46. Hu, C., Zhao, X., Zhao, J., Wu, S., & Zhao, Z. K. (2009). Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresource Technology, 100(20), 4843–4847.

    Article  Google Scholar 

  47. Chao, H., Hong, W., Li-ping, L., Wen-yong, L., & Min-hua, Z. (2012). Effects of alcohol compounds on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. PLoS One, 7(10), 1–12.

    Google Scholar 

  48. Wang, J., Gao, Q., Zhang, H., & Bao, J. (2016). Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporon cutaneum using lignocellulose feedstock. Bioresource Technology, 218, 892–901.

    Article  Google Scholar 

  49. Huang, C., Wu, H., Smith, T. J., Z-j, L., Lou, W.-Y., & M-h, Z. (2012). In vivo detoxification of furfural during lipid production by the oleaginous yeast Trichosporon fermentans. Biotechnology Letters, 34(9), 1637–1642.

    Article  Google Scholar 

  50. Gong, Z., Zhou, W., Shen, H., Yang, Z., Wang, G., Zuo, Z., Hou, Y., & Zhao, Z. K. (2016). Co-fermentation of acetate and sugars facilitating microbial lipid production on acetate-rich biomass hydrolysates. Bioresource Technology, 207, 102–108.

    Article  Google Scholar 

  51. Sitepu, I., Selby, T., Lin, T., Zhu, S., & Boundy-Mills, K. (2014). Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species. Journal of Industrial Microbiology & Biotechnology, 41(7), 1061–1070.

    Article  Google Scholar 

  52. Liu, J., Pei, G., Diao, J., Chen, Z., Liu, L., Chen, L., & Zhang, W. (2017). Screening and transcriptomic analysis of Crypthecodinium cohnii mutants with high growth and lipid content using the acetyl-CoA carboxylase inhibitor sethoxydim. Applied Microbiology and Biotechnology, 101(15), 6179–6191.

    Article  Google Scholar 

  53. Cao, S., Zhou, X., Jin, W., Wang, F., Tu, R., Han, S., Chen, H., Chen, C., Xie, G.-J., & Ma, F. (2017). Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP). Bioresource Technology, 244, 1400–1406.

    Article  Google Scholar 

  54. Sun, X., Li, P., Liu, X., Wang, X., Liu, Y., Turaib, A., & Cheng, Z. (2020). Strategies for enhanced lipid production of Desmodesmus sp. mutated by atmospheric and room temperature plasma with a new efficient screening method. Journal of Cleaner Production, 250, 119509.

    Article  Google Scholar 

  55. Tai, M., & Stephanopoulos, G. (2013). Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metabolic Engineering, 15, 1–9.

    Article  Google Scholar 

  56. Kamisaka, Y., Kimura, K., Uemura, H., & Yamaoka, M. (2013). Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast. Applied Microbiology and Biotechnology, 97(16), 7345–7355.

    Article  Google Scholar 

  57. Ledesma-Amaro, R., Santos, M. A., Jiménez, A., & Revuelta, J. L. (2014). Strain design of Ashbya gossypii for single-cell oil production. Applied and Environmental Microbiology, 80(4), 1237–1244.

    Article  Google Scholar 

  58. Kurosawa, K., Wewetzer, S. J., & Sinskey, A. J. (2013). Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnology for Biofuels, 6(1), 134.

    Article  Google Scholar 

  59. Kurosawa, K., Laser, J., & Sinskey, A. J. (2015). Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. Biotechnology for Biofuels, 8, 76–85.

    Article  Google Scholar 

  60. Zhang, Y. W. L. W. (2012). Advances in the research of microalgae bioenergy. Marine Sciences, 36, 132–138.

    Google Scholar 

  61. Majidian, P., Tabatabaei, M., Zeinolabedini, M., Naghshbandi, M. P., & Chisti, Y. (2018). Metabolic engineering of microorganisms for biofuel production. Renewable and Sustainable Energy Reviews, 82, 3863–3885.

    Article  Google Scholar 

  62. Li, Y., Han, D., Hu, G., Dauvillee, D., Sommerfeld, M., Ball, S., & Hu, Q. (2010). Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metabolic Engineering, 12(4), 387–391.

    Article  Google Scholar 

  63. Sahay, S., & Braganza, V. J. (2016). Microalgae based biodiesel production-current and future scenario. Journal of Experimental Science, 7, 31–35.

    Article  Google Scholar 

  64. Beopoulos, A., Mrozova, Z., Thevenieau, F., Le Dall, M.-T., Hapala, I., Papanikolaou, S., Chardot, T., & Nicaud, J.-M. (2008). Control of lipid accumulation in the yeast Yarrowia lipolytica. Applied and Environmental Microbiology, 74(24), 7779–7789.

    Article  Google Scholar 

  65. Kalscheuer, R., Stölting, T., & Steinbüchel, A. (2006). Microdiesel: Escherichia coli engineered for fuel production. Microbiology, 152(9), 2529–2536.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key R&D Program of China (2018YFA0901500) and the National Natural Science Foundation of China (21878241).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Fei or Yunyun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fei, Q., Liu, Y., Meruvu, H., Jiao, Z., Fu, R. (2021). Advanced Fermentation Strategies to Enhance Lipid Production from Lignocellulosic Biomass. In: Liu, ZH., Ragauskas, A. (eds) Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities. Springer, Cham. https://doi.org/10.1007/978-3-030-65584-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65584-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65583-9

  • Online ISBN: 978-3-030-65584-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics