Skip to main content

The Simpex-Lattice Method Application to Optimize the Design of Soil-Slag-Fly Ash Mixtures

  • Conference paper
  • First Online:
Characterization of Minerals, Metals, and Materials 2021

Abstract

Ladle furnace slags and fly ashes may be utilized as soil stabilizers in road construction as an option to reuse these by-products. However, there is no method grounded on experimental design to optimize the dosage of those by-products in mixtures with soil. This study applied the Simplex-Lattice method to perform the experimental design to optimize the design of soil-slag-fly ash mixtures. The soil was geomechanically characterized and the by-products were subjected to scanning electronic microscopy (SEM), X-ray diffraction (XRD), pozzolanic activity, and specific surface area analysis. The experimental mixtures were submitted to an unconfined compressive strength test and the results led to a response surface and a mathematical model that described the interaction between the components and allowed the mixture design optimization. This study highlights the potential of the Simplex-Lattice method to optimize soil-slag-fly ash mixtures and the technical suitability of utilizing those by-products as soil stabilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Instituto aço brasil (IAB) (2018) Relatório de Sustentabilidade. Rio de Janeiro–RJ: Instituto Aço Brasil. http://www.acobrasil.org.br/sustentabilidade/. Accessed 3th Aug 2019

  2. Palod R, Deo S, Ramtekkar G (2017) Review and Suggestions on use of steel slag in concrete and its potential use as cementitious component combined with GGBS. Int J Civil Eng Technol 8:1026–1035

    Google Scholar 

  3. Santamaría A, González JJ, Losáñez MM, Skaf M, Ortega-Lopez V (2020) The design of self-compacting structural mortar containing steelmaking slags as aggregate. Cement Concr Compos 111 (103627). https://doi.org/10.1016/j.cemconcomp.2020.103627

  4. Shi Z, Shi C, Zhao R, Wang D, He F (2016) Factorial design method for designing ternary composite cements to mitigate ASR expansion. J Mater Civil Eng 28(9). https://doi.org/10.1061/(asce)mt.1943-5533.0001568

  5. Oluwasola EA, Hainin MR, Aziz MMA (2015) Comparative evaluation of dense-graded and gap-graded asphalt mix incorporating electric arc furnace steel slag and copper mine tailings. J Cleaner Product 122:315–325. https://doi.org/10.1016/j.jclepro.2016.02.051

    Article  Google Scholar 

  6. Aldeeky H, Al Hattamleh O (2017) Experimental study on the utilization of fine steel slag on stabilizing high plastic subgrade soil. Advan Civil Eng (9230279)

    Google Scholar 

  7. Zumrawi MM, Babikir AAA (2016) Laboratory study of steel slag used for stabilizing expansive soil. Univer Khartoum Eng J 6(2):30–35

    Google Scholar 

  8. Yildirim IZ, Prezzi M (2017) Experimental evaluation of EAF ladle steel slag as a geo-fill material: Mineralogical, physical & mechanical properties. Constr Buil Mater 154:23–33

    Article  CAS  Google Scholar 

  9. ABNT NBR 12653 (2014) Materiais pozolânicos. Rio de Janeiro: ABNT. (Portuguese version)

    Google Scholar 

  10. Diniz DH, Carvalho JMFD, Mendes JC, Peixoto RAF (2017) Blast oxygen furnace slag as chemical soil stabilizer for use in roads. J Mater Civil Eng 29:04017118

    Article  Google Scholar 

  11. Medeiros VSC, Pedroti LG, Mendes BCM, Pitanga HN, Silva TO (2019) Study of mixtures using simplex design for the addition of chamotte in clay bricks. Int J Appl Ceram Technol 16:2349–2361. https://doi.org/10.1111/ijac.13346

    Article  CAS  Google Scholar 

  12. He P, Zhang B, Lu J, Poon CS (2020) A ternary optimization of alkali-activated cement mortars incorporating glass powder, slag and calcium aluminate cement. Constr Buil Mater 240:117983. https://doi.org/10.1016/j.conbuildmat.2019.117983

    Article  CAS  Google Scholar 

  13. Abbas YM (2018) Simplex-lattice strength and permeability optimization of concrete incorporating silica fume and natural pozzolan. Constr Buil Mater 168:199–208

    Article  CAS  Google Scholar 

  14. ABNT NBR 6457 (2016) Soil samples − Preparation for compaction and characterization tests. Rio de Janeiro: ABNT (Portuguese version)

    Google Scholar 

  15. ABNT NBR 10007 (2004) Sampling of solid waste. Rio de Janeiro: ABNT. (Portuguese version)

    Google Scholar 

  16. ABNT NBR 12653 (2014) Pozzolanic materials–Requirements. Rio de Janeiro: ABNT. (Portuguese version)

    Google Scholar 

  17. ABNT NBR 7181 (2016) Soil–Grain size analysis. Rio de Janeiro: ABNT. (Portuguese version)

    Google Scholar 

  18. ABNT NBR 6458 (2016) Gravel grains retained on the 4,8 mm mesh sieve–Determination of the bulk specific gravity, of the apparent specific gravity and of water absorption. Rio de Janeiro: ABNT. (Portuguese version)

    Google Scholar 

  19. ABNT NBR 6459 (2016) Soil–Liquid limit determination. Rio de Janeiro: ABNT. (Portuguese version)

    Google Scholar 

  20. ABNT NBR 7180 (2016) Soil–Plasticity limit determination. Rion de Janeiro: ABNT. (Portuguese version)

    Google Scholar 

  21. ABNT NBR 16605 (2017) Portland cement and other powdered material–Determination of the specific gravity. Rio de Janeiro: ABNT. (Portuguese version)

    Google Scholar 

  22. ABNT NBR 11579 (2012). Portland cement–Determination of fineness index by means of the 75 μm sieve (nº 200). Rio de Janeiro: ABNT. (Portuguese version)

    Google Scholar 

  23. Luxán MP, Madruga F, Saavedra J (1989) Rapid evaluation of pozzolanic activity of natural products by conductivity measurement. Cement Concr Res 19(1):63–68

    Article  Google Scholar 

  24. Jiao D, Shi C, Yuan Q, An X, Liu Y (2018) Mixture design of concrete using simplex centroid design method. Cement Concr Compos 89:76–88. https://doi.org/10.1016/j.cemconcomp.2018.03.001

    Article  CAS  Google Scholar 

  25. Santos AL, Pitanga HN, Silva ACB, Silva TO (2018) Caracterização do comportamento mecânico de misturas de solo-escória de aciaria-cinza volante visando a aplicação em obras de pavimentação. Revista Brasileira de Energias Renováveis 7(1):16–29. https://doi.org/10.5380/rber.v7i1.57963

    Article  Google Scholar 

  26. ABNT NBR 7182 (2016) Soil–Compaction test. Rio de Janeiro: ABNT. (Portuguese version)

    Google Scholar 

  27. ABNT NBR 12025 (2012) Soilcement–Simple compression test of cylindrical specimens–Method of test. Rio de Janeiro: ABNT. (Portuguese version)

    Google Scholar 

  28. Vassileva SV, Menendez R, Alvarez D, Diaz-Somoanob M (2003) Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 1. Characterization of feed coals and fly ashes. Fuel 82:1793–1811

    Article  Google Scholar 

  29. Grubeša IN, Barišić I, Fučić A, Bansode SS (2016) Characteristics and uses of steel slag in building construction. Chennai, India: Elsevier, Woodhead Publishing. ISBN 978-0-08100976-5

    Google Scholar 

Download references

Acknowledgements

The authors thank Federal University of Viçosa, Brazil and Coordenação de Aperfeiçoamento Pessoal de Nível Superior–Brasil (CAPES) for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateus Henrique R. Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodrigues, M.H.R., Pedroti, L.G., da Silva, T.O., Pitanga, H.N., Rodrigues, K.H.d., Lopes, E.C. (2021). The Simpex-Lattice Method Application to Optimize the Design of Soil-Slag-Fly Ash Mixtures. In: Li, J., et al. Characterization of Minerals, Metals, and Materials 2021. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-65493-1_61

Download citation

Publish with us

Policies and ethics