Skip to main content

Rotator Cuff Tendinopathy

  • Living reference work entry
  • First Online:
Orthopaedic Sports Medicine

Abstract

Rotator cuff tendinopathy refers to a progressive disease of the rotator cuff tendons, encompassing acute tendinitis, tendinosis with degeneration, and partial thickness tearing, and may result in a full-thickness tear. Rotator cuff tendinopathy can be the result of extrinsic or intrinsic factors. Tendinopathy caused by extrinsic factors is commonly referred to as impingement syndrome. Patients typically present with pain and weakness on external rotation and elevation of the shoulder. Diagnosis involves clinical tests as well as imaging including X-ray, ultrasound, and magnetic resonance imaging. Rotator cuff tendinopathy is typically treated conservatively through use of NSAIDs, a graduated exercise program, or injection therapy. The medium and where to deliver the injection remain controversial. Surgical intervention is only performed after 4–6 months of failed conservative treatment and, depending on the pathology, typically consists of an acromioplasty or a subacromial decompression. An understanding of the anatomy of the rotator cuff tendons, histology of chronic tendinopathy, and extrinsic and intrinsic causes of tendinopathy are required to fully understand how to accurately diagnose and treat rotator cuff tendinopathy.

In 1983, Neer described the pathophysiology of rotator cuff disease in three stages: impingement syndrome, partial-thickness tear, and complete rotator cuff tears [1]. More recently, Lewis suggested a continuum of disease from reactive to disrepair and finally degenerative tendinopathy [2]. The term tendinopathy describes a painful condition that develops potentially due to an imbalance between pathologic responses from tendon overuse and regenerative changes, leading to impaired functional mobility [3]. While histological evidence suggests little or no inflammation is present, chronic changes include degeneration and disorganization of collagen fibers, increased cellularity, and tendon thickening [4]. Extrinsic and intrinsic mechanisms have been identified that lead to the development of rotator cuff tendinopathy. Extrinsic factors (i.e., bony or soft tissue) can cause compression of the rotator cuff tendons, while intrinsic mechanisms (e.g., aging, decreased vascularity, tendon overuse) are commonly associated with degeneration of the rotator cuff tendon. These factors can contribute to tendon wear and fraying and manifest as a range of subacromial pathologies, including partial-thickness rotator cuff tears, rotator cuff tendinosis, calcific tendinitis, and subacromial bursitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Neer CS II. Impingement lesions. Clin Orthop Relat Res. 1983;1983(173):70–7.

    Google Scholar 

  2. Lewis JS. Rotator cuff tendinopathy: a model for the continuum of pathology and related management [Internet]. Br J Sports Med. 2010;44:918–23. https://doi.org/10.1136/bjsm.2008.054817.

    Article  PubMed  Google Scholar 

  3. Factor D, Dale B. Current concepts of rotator cuff tendinopathy. Int J Sports Phys Ther. 2014;9(2):274–88.

    PubMed  PubMed Central  Google Scholar 

  4. Fukuda H, Hamada K, Yamanaka K. Pathology and pathogenesis of bursal-side rotator cuff tears viewed from en bloc histologic sections. Clin Orthop Relat Res. 1990;1990(254):75–80.

    Google Scholar 

  5. Varacallo M, El Bitar Y, Mair SD. Rotator cuff syndrome. In: StatPearls. Treasure Island: StatPearls Publishing; 2021.

    Google Scholar 

  6. Leong HT, Fu SC, He X, Oh JH, Yamamoto N, Hang S. Risk factors for rotator cuff tendinopathy: a systematic review and meta-analysis. J Rehabil Med. 2019;51(9):627–37.

    Article  PubMed  Google Scholar 

  7. Littlewood C, May S, Walters S. Epidemiology of rotator cuff tendinopathy: a systematic review [Internet]. Shoulder Elbow. 2013;5:256–65. https://doi.org/10.1111/sae.12028.

    Article  Google Scholar 

  8. Creech JA, Silver S. Shoulder impingement syndrome. In: StatPearls. Treasure Island: StatPearls Publishing; 2021.

    Google Scholar 

  9. Maruvada S, Madrazo-Ibarra A, Varacallo M. Anatomy, rotator cuff. In: StatPearls. Treasure Island: StatPearls Publishing; 2021.

    Google Scholar 

  10. DePalma AF. The classic. Surgical anatomy of the rotator cuff and the natural history of degenerative periarthritis. Surg Clin North Am. 1963;43:1507–1520. Clin Orthop Relat Res. 2008;466(3):543–51.

    PubMed  Google Scholar 

  11. Gumina S. Rotator cuff tear: pathogenesis, evaluation and treatment. New York: Springer; 2018. p. 438.

    Google Scholar 

  12. Curtis AS, Burbank KM, Tierney JJ, Scheller AD, Curran AR. The insertional footprint of the rotator cuff: an anatomic study. Arthroscopy. 2006;22(6):609.e1.

    Article  PubMed  Google Scholar 

  13. Sano H, Ishii H, Yeadon A, Backman DS, Brunet JA, Uhthoff HK. Degeneration at the insertion weakens the tensile strength of the supraspinatus tendon: a comparative mechanical and histologic study of the bone-tendon complex [Internet]. J Orthop Res. 1997;15:719–26. https://doi.org/10.1002/jor.1100150514.

    Article  CAS  PubMed  Google Scholar 

  14. Mochizuki T, Sugaya H, Uomizu M, Maeda K, Matsuki K, Sekiya I, et al. Humeral insertion of the supraspinatus and infraspinatus. New anatomical findings regarding the footprint of the rotator cuff. Surgical technique. J Bone Joint Surg Am. 2009;91(Suppl 2, Pt 1):1–7.

    Article  PubMed  Google Scholar 

  15. Umer M, Qadir I, Azam M. Subacromial impingement syndrome [Internet]. Orthop Rev. 2012;4:18. https://doi.org/10.4081/or.2012.e18.

    Article  Google Scholar 

  16. McLean A, Taylor F. Classifications in brief: Bigliani classification of acromial morphology. Clin Orthop Relat Res. 2019;477(8):1958–61.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Epstein RE, Schweitzer ME, Frieman BG, Fenlin JM, Mitchell DG. Hooked acromion: prevalence on MR images of painful shoulders [Internet]. Radiology. 1993;187:479–81. https://doi.org/10.1148/radiology.187.2.8475294.

    Article  CAS  PubMed  Google Scholar 

  18. Henkus HE, de Witte PB, Nelissen RGHH, Brand R, van Arkel ERA. Bursectomy compared with acromioplasty in the management of subacromial impingement syndrome: a prospective randomised study. J Bone Joint Surg Br. 2009;91(4):504–10.

    Article  CAS  PubMed  Google Scholar 

  19. Tangtrakulwanich B, Kapkird A. Analyses of possible risk factors for subacromial impingement syndrome. World J Orthop. 2012;3(1):5–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Seitz AL, McClure PW, Finucane S, Boardman ND III, Michener LA. Mechanisms of rotator cuff tendinopathy: intrinsic, extrinsic, or both? Clin Biomech. 2011;26(1):1–12.

    Article  Google Scholar 

  21. Watson-Jones R. The classic: “fractures and joint injuries” by Sir Reginald Watson-Jones, taken from “fractures and joint injuries,” by R. Watson-Jones, vol. II, 4th ed., Baltimore, Williams and Wilkins Company, 1955. Clin Orthop Relat Res. 1974;1974(105):4–10.

    Google Scholar 

  22. Neer CS II. Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. J Bone Joint Surg Am. 1972;54(1):41–50.

    Article  PubMed  Google Scholar 

  23. Matthews LS, Fadale PD. Subacromial anatomy for the arthroscopist. Arthroscopy. 1989;5(1):36–40.

    Article  CAS  PubMed  Google Scholar 

  24. Graichen H, Bonel H, Stammberger T, Englmeier KH, Reiser M, Eckstein F. Subacromial space width changes during abduction and rotation – a 3-D MR imaging study. Surg Radiol Anat. 1999;21(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  25. Hinterwimmer S, Von Eisenhart-Rothe R, Siebert M, Putz R, Eckstein F, Vogl T, et al. Influence of adducting and abducting muscle forces on the subacromial space width [Internet]. Med Sci Sports Exerc. 2003;35:2055–9. https://doi.org/10.1249/01.mss.0000099089.49700.53.

    Article  PubMed  Google Scholar 

  26. Budoff JE, Nirschl RP. Regarding “apoptosis in the supraspinatus tendon with stage II subacromial impingement”. J Shoulder Elb Surg. 2009;18(1):e26–7. Author reply e27

    Article  Google Scholar 

  27. Longo UG, Franceschi F, Ruzzini L, Rizzello G, Maffulli N, Denaro V. Paper 166. Histopathology of the supraspinatus tendon in rotator cuff tears [Internet]. Arthroscopy. 2012;28:e433. https://doi.org/10.1016/j.arthro.2012.05.649.

    Article  Google Scholar 

  28. Brooks CH, Revell WJ, Heatley FW. A quantitative histological study of the vascularity of the rotator cuff tendon. J Bone Joint Surg Br. 1992;74(1):151–3.

    Article  CAS  PubMed  Google Scholar 

  29. Levy O, Relwani J, Zaman T, Even T, Venkateswaran B, Copeland S. Measurement of blood flow in the rotator cuff using laser Doppler flowmetry. J Bone Joint Surg Br. 2008;90(7):893–8.

    Article  CAS  PubMed  Google Scholar 

  30. Lewis J, McCreesh K, Roy J-S, Ginn K. Rotator cuff tendinopathy: navigating the diagnosis-management conundrum. J Orthop Sports Phys Ther. 2015;45(11):923–37.

    Article  PubMed  Google Scholar 

  31. Bishay V, Gallo RA. The evaluation and treatment of rotator cuff pathology. Prim Care. 2013;40(4):889–910, viii.

    Article  PubMed  Google Scholar 

  32. Woodward TW, Best TM. The painful shoulder: part I. Clinical evaluation. Am Fam Physician. 2000;61(10):3079–88.

    CAS  PubMed  Google Scholar 

  33. Hegedus EJ, Goode AP, Cook CE, Michener L, Myer CA, Myer DM, et al. Which physical examination tests provide clinicians with the most value when examining the shoulder? Update of a systematic review with meta-analysis of individual tests. Br J Sports Med. 2012;46(14):964–78.

    Article  PubMed  Google Scholar 

  34. Pesquer L, Borghol S, Meyer P, Ropars M, Dallaudière B, Abadie P. Multimodality imaging of subacromial impingement syndrome. Skelet Radiol. 2018;47(7):923–37.

    Article  Google Scholar 

  35. Balke M, Schmidt C, Dedy N, Banerjee M, Bouillon B, Liem D. Correlation of acromial morphology with impingement syndrome and rotator cuff tears. Acta Orthop. 2013;84(2):178–83.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lin C-L, Chen Y-W, Lin L-F, Chen C-P, Liou T-H, Huang S-W. Accuracy of the critical shoulder angle for predicting rotator cuff tears in patients with nontraumatic shoulder pain. Orthop J Sports Med. 2020;8(5):2325967120918995.

    PubMed  PubMed Central  Google Scholar 

  37. Kitay GS, Iannotti JP, Williams GR, Haygood T, Kneeland BJ, Berlin J. Roentgenographic assessment of acromial morphologic condition in rotator cuff impingement syndrome. J Shoulder Elb Surg. 1995;4(6):441–8.

    Article  CAS  Google Scholar 

  38. Plomb-Holmes C, Clavert P, Kolo F, Tay E, Lädermann A. An orthopaedic surgeon’s guide to ultrasound imaging of the healthy, pathological and postoperative shoulder [Internet]. Orthop Traumatol Surg Res. 2018;104:S219–32. https://doi.org/10.1016/j.otsr.2018.07.011.

    Article  PubMed  Google Scholar 

  39. Serpi F, Albano D, Rapisarda S, Chianca V, Sconfienza LM, Messina C. Shoulder ultrasound: current concepts and future perspectives. J Ultrason. 2021;21(85):e154–61.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Quinn SF, Sheley RC, Demlow TA, Szumowski J. Rotator cuff tendon tears: evaluation with fat-suppressed MR imaging with arthroscopic correlation in 100 patients [Internet]. Radiology. 1995;195:497–500. https://doi.org/10.1148/radiology.195.2.7724773.

    Article  CAS  PubMed  Google Scholar 

  41. Balich SM, Sheley RC, Brown TR, Sauser DD, Quinn SF. MR imaging of the rotator cuff tendon: interobserver agreement and analysis of interpretive errors. Radiology. 1997;204(1):191–4.

    Article  CAS  PubMed  Google Scholar 

  42. Buchbinder R, Green S, Youd JM. Corticosteroid injections for shoulder pain. Cochrane Database Syst Rev. 2003;2003(1):CD004016.

    PubMed  PubMed Central  Google Scholar 

  43. McCreesh KM, Crotty JM, Lewis JS. Acromiohumeral distance measurement in rotator cuff tendinopathy: is there a reliable, clinically applicable method? A systematic review [Internet]. Br J Sports Med. 2015;49:298–305. https://doi.org/10.1136/bjsports-2012-092063.

    Article  PubMed  Google Scholar 

  44. Kim H, Kim B, Shim J, Kwon H, Jung J. Comparative analysis of acromiohumeral distances according to the locations of the arms and humeral rotation. J Phys Ther Sci. 2014;26(1):97–100.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Henseler JF, de Witte PB, de Groot JH, van Zwet EW, Nelissen RGH, Nagels J. Cranial translation of the humeral head on radiographs in rotator cuff tear patients: the modified active abduction view [Internet]. Med Biol Eng Comput. 2014;52:233–40. https://doi.org/10.1007/s11517-013-1057-2.

    Article  CAS  PubMed  Google Scholar 

  46. Kibler WB, Ben Kibler W, McMullen J, Uhl T. Shoulder rehabilitation strategies, guidelines, and practice [Internet]. Oper Tech Sports Med. 2000;8:258–67. https://doi.org/10.1053/otsm.2000.17775.

    Article  Google Scholar 

  47. Cools AM, Johansson FR, Borms D, Maenhout A. Prevention of shoulder injuries in overhead athletes: a science-based approach. Braz J Phys Ther. 2015;19(5):331–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mena HR, Lomen PL, Turner LF, Lamborn KR, Brinn EL. Treatment of acute shoulder syndrome with flurbiprofen. Am J Med. 1986;80(3A):141–4.

    Article  CAS  PubMed  Google Scholar 

  49. Mazières B, Rouanet S, Guillon Y, Scarsi C, Reiner V. Topical ketoprofen patch in the treatment of tendinitis: a randomized, double blind, placebo controlled study. J Rheumatol. 2005;32(8):1563–70.

    PubMed  Google Scholar 

  50. Petri M, Hufman SL, Waser G, Cui H, Snabes MC, Verburg KM. Celecoxib effectively treats patients with acute shoulder tendinitis/bursitis. J Rheumatol. 2004;31(8):1614–20.

    CAS  PubMed  Google Scholar 

  51. Andres BM, Murrell GAC. Treatment of tendinopathy: what works, what does not, and what is on the horizon [Internet]. Clin Orthop Relat Res. 2008;466:1539–54. https://doi.org/10.1007/s11999-008-0260-1.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bang MD, Deyle GD. Comparison of supervised exercise with and without manual physical therapy for patients with shoulder impingement syndrome. J Orthop Sports Phys Ther. 2000;30(3):126–37.

    Article  CAS  PubMed  Google Scholar 

  53. Desjardins-Charbonneau A, Roy J-S, Dionne CE, Frémont P, MacDermid JC, Desmeules F. The efficacy of manual therapy for rotator cuff tendinopathy: a systematic review and meta-analysis [Internet]. J Orthop Sports Phys Ther. 2015;45:330–50. https://doi.org/10.2519/jospt.2015.5455.

    Article  PubMed  Google Scholar 

  54. Griffin LY. Essentials of musculoskeletal care. Rosemont: American Academy of Orthopaedic Surgeons; 2005. p. 1053.

    Google Scholar 

  55. Weber S, Chahal J. Case studies AAOS clinical practice guideline: management of rotator cuff injuries. J Am Acad Orthop Surg. 2021;29(3):e104–8.

    Article  PubMed  Google Scholar 

  56. Nejati P, Ghahremaninia A, Naderi F, Gharibzadeh S, Mazaherinezhad A. Treatment of subacromial impingement syndrome: platelet-rich plasma or exercise therapy? A randomized controlled trial [Internet]. Orthop J Sports Med. 2017;5:232596711770236. https://doi.org/10.1177/2325967117702366.

    Article  Google Scholar 

  57. Celik D, Atalar AC, Güçlü A, Demirhan M. The contribution of subacromial injection to the conservative treatment of impingement syndrome. Acta Orthop Traumatol Turc. 2009;43(4):331–5.

    Article  PubMed  Google Scholar 

  58. Yu C-M, Chen C-H, Liu H-T, Dai M-H, Wang I-C, Wang K-C. Subacromial injections of corticosteroids and xylocaine for painful subacromial impingement syndrome. Chang Gung Med J. 2006;29(5):474–9.

    PubMed  Google Scholar 

  59. Dadgostar H, Fahimipour F, Pahlevan Sabagh A, Arasteh P, Razi M. Corticosteroids or platelet-rich plasma injections for rotator cuff tendinopathy: a randomized clinical trial study. J Orthop Surg Res. 2021;16(1):333.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jo CH, Chai JW, Jeong EC, Oh S, Kim PS, Yoon JY, et al. Intratendinous injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of rotator cuff disease: a first-in-human trial. Stem Cells. 2018;36(9):1441–50.

    Article  CAS  PubMed  Google Scholar 

  61. Harrison AK, Flatow EL. Subacromial impingement syndrome. J Am Acad Orthop Surg. 2011;19(11):701–8.

    Article  PubMed  Google Scholar 

  62. Bengtsson M, Lunsjö K, Hermodsson Y, Nordqvist A, Abu-Zidan FM. High patient satisfaction after arthroscopic subacromial decompression for shoulder impingement: a prospective study of 50 patients [Internet]. Acta Orthop. 2006;77:138–42. https://doi.org/10.1080/17453670610045821.

    Article  PubMed  Google Scholar 

  63. Nutton RW, McBirnie JM, Phillips C. Treatment of chronic rotator-cuff impingement by arthroscopic subacromial decompression. J Bone Joint Surg Br. 1997;79(1):73–6.

    Article  CAS  PubMed  Google Scholar 

  64. Stephens SR, Warren RF, Payne LZ, Wickiewicz TL, Altchek DW. Arthroscopic acromioplasty: a 6- to 10-year follow-up. Arthroscopy. 1998;14(4):382–8.

    Article  CAS  PubMed  Google Scholar 

  65. Hawkins RJ, Plancher KD, Saddemi SR, Brezenoff LS, Moor JT. Arthroscopic subacromial decompression. J Shoulder Elb Surg. 2001;10(3):225–30.

    Article  CAS  Google Scholar 

  66. Davis AD, Kakar S, Moros C, Kaye EK, Schepsis AA, Voloshin I. Arthroscopic versus open acromioplasty: a meta-analysis. Am J Sports Med. 2010;38(3):613–8.

    Article  PubMed  Google Scholar 

  67. Ellman H. Arthroscopic subacromial decompression: analysis of results of 1–3 years [Internet]. Arthroscopy. 1987;3:133. https://doi.org/10.1016/s0749-8063(87)80040-3.

    Article  Google Scholar 

  68. Odenbring S, Wagner P, Atroshi I. Long-term outcomes of arthroscopic acromioplasty for chronic shoulder impingement syndrome: a prospective cohort study with a minimum of 12 years’ follow-up. Arthroscopy. 2008;24(10):1092–8.

    Article  PubMed  Google Scholar 

  69. Jaeger M, Berndt T, Rühmann O, Lerch S. Patients with impingement syndrome with and without rotator cuff tears do well 20 years after arthroscopic subacromial decompression. Arthroscopy. 2016;32(3):409–15.

    Article  PubMed  Google Scholar 

  70. Farfaras S, Sernert N, Hallström E, Kartus J. Comparison of open acromioplasty, arthroscopic acromioplasty and physiotherapy in patients with subacromial impingement syndrome: a prospective randomised study. Knee Surg Sports Traumatol Arthrosc. 2016;24(7):2181–91.

    Article  PubMed  Google Scholar 

  71. Ketola S, Lehtinen JT, Arnala I. Arthroscopic decompression not recommended in the treatment of rotator cuff tendinopathy [Internet]. Bone Joint J. 2017;99B:799–805. https://doi.org/10.1302/0301-620x.99b6.bjj-2016-0569.r1.

    Article  Google Scholar 

  72. Cederqvist S, Flinkkilä T, Sormaala M, Ylinen J, Kautiainen H, Irmola T, et al. Non-surgical and surgical treatments for rotator cuff disease: a pragmatic randomised clinical trial with 2-year follow-up after initial rehabilitation [Internet]. Ann Rheum Dis. 2020; https://doi.org/10.1136/annrheumdis-2020-219099.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Plancher .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Commaroto, S.A. et al. (2023). Rotator Cuff Tendinopathy. In: Espregueira-Mendes, J., Karlsson, J., Musahl, V., Ayeni, O.R. (eds) Orthopaedic Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-65430-6_119-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65430-6_119-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65430-6

  • Online ISBN: 978-3-030-65430-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics