Skip to main content

Using Preference Intensity for Detecting Network Communities

  • Conference paper
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 943))

Abstract

In a real-world network, overlapping structures are essential for understanding the community. In many different situations, a node may join or leave, and this defines sub-communities of varying size. In this paper, we propose a preference implication based-method for generating overlapping structures based on a local function optimization approach. We introduce some parameters in our novel method to design the communities according to a threshold. This method allows us to control the size and number of these overlapping regions. The \(\nu \) will enable us to design the sub-communities. This framework can easily detect communities in a scale-free network case. We set our experiments using artificial and real network data with a size between \({\approx }15\) to \({\approx }10000\). In our findings, we found a good relationship between \(\nu \) and overlapping nodes in communities. We control our procedure using \(\alpha \) parameter as well. We can say that the preference is stronger when \(\nu \) is greater than 0.5, and a value of \(\alpha \) between 0.20 and 0.80. The third parameter \(\delta \), which controls the intensity of community membership, defines the degree of relationship of a node to a community. The communities detected by the preference implication method obey a power law in the community size distribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nepusz, T., Vicsek, T.: Controlling edge dynamics in complex networks. Nat. Phys. 8(7), 568 (2012)

    Article  Google Scholar 

  2. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814 (2005)

    Article  Google Scholar 

  3. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  4. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks 99(12), 7821–7826 (2002)

    Google Scholar 

  5. Barabási, A.L.: Network Science. Cambridge University Press (2016). http://networksciencebook.com/

  6. Gregory, S.: Fuzzy overlapping communities in networks. J. Stat. Mech. Theor. Exp. 2011(2), P02017 (2011)

    Article  Google Scholar 

  7. Gavin, A.C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141 (2002)

    Article  Google Scholar 

  8. Baumes, J., Goldberg, M.K., Krishnamoorthy, M.S., Magdon-Ismail, M., Preston,N.: Finding communities by clustering a graph into overlapping subgraphs. In: IADIS AC, pp. 97–104 (2005)

    Google Scholar 

  9. Derényi, I., Palla, G., Vicsek, T.: Clique percolation in random networks. Phys. Rev. Lett. 94(16), 160202 (2005)

    Article  Google Scholar 

  10. Gulbahce, N., Lehmann, S.: The art of community detection. BioEssays 30(10), 934–938 (2008)

    Article  Google Scholar 

  11. Kelley, S.: The existence and discovery of overlapping communities in large-scale networks. Ph.D. thesis, Rensselaer Polytechnic Institute (2009)

    Google Scholar 

  12. Kim, J., Wilhelm, T.: What is a complex graph? Phys. A 387(11), 2637–2652 (2008)

    Article  MathSciNet  Google Scholar 

  13. Li, H.J., Bu, Z., Li, A., Liu, Z., Shi, Y.: Fast and accurate mining the community structure: integrating center locating and membership optimization. IEEE Trans. Knowl. Data Eng. 28(9), 2349–2362 (2016)

    Article  Google Scholar 

  14. Liu, C., Chamberlain, B.P.: Speeding up bigclam implementation on snap. arXiv preprint arXiv:1712.01209 (2017)

  15. Nepusz, T., Petróczi, A., Négyessy, L., Bazsó, F.: Fuzzy communities and the concept of bridgeness in complex networks. Phys. Rev. E 77(1), 016107 (2008)

    Article  MathSciNet  Google Scholar 

  16. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical report, Stanford InfoLab (1999)

    Google Scholar 

  17. Populi, N.: The real-life applications of graph data structures you must know (2018). https://leapgraph.com/graph-data-structures-applications

  18. Traud, A.L., Kelsic, E.D., Mucha, P.J., Porter, M.A.: Comparing community structure to characteristics in online collegiate social networks. SIAM Rev. 53(3), 526–543 (2011)

    Article  MathSciNet  Google Scholar 

  19. Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of Facebook networks. Phys. A 391(16), 4165–4180 (2012)

    Article  Google Scholar 

  20. Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.F., Khanafer, N., Régis, C., Kim, B., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLOS ONE 8(9) (2013)

    Google Scholar 

  21. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. (CSUR) 45(4), 1–35 (2013)

    Article  Google Scholar 

  22. Yang, J., Leskovec, J.: Overlapping community detection at scale: a nonnegative matrix factorization approach. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining, pp. 587–596 (2013)

    Google Scholar 

  23. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  24. Lancichinetti, A., Radicchi, F., Ramasco, J.J., Fortunato, S.: Finding statistically significant communities in networks. PLOS ONE 6(4) (2011)

    Google Scholar 

  25. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Natl. Acad. Sci. 101, 2658–2663 (2004)

    Article  Google Scholar 

  26. Dombi, J., Gera, Z., Vincze, N.: On preferences related to aggregative operators and their transitivity. In: LINZ, p. 56 (2006)

    Google Scholar 

  27. Dombi, J., Baczyński, M.: General characterization of implication’s distributivity properties: the preference implication. IEEE Trans. Fuzzy Syst. 1 (2019)

    Google Scholar 

  28. Dombi, J.: Basic concepts for a theory of evaluation: the aggregative operator. Eur. J. Oper. Res. 10(3), 282–293 (1982)

    Article  MathSciNet  Google Scholar 

  29. Dombi, J., Jónás, T.: Approximations to the normal probability distribution function using operators of continuous-valued logic. Acta Cybernetica 23(3), 829–852 (2018)

    Article  MathSciNet  Google Scholar 

  30. Csardi, G., Nepusz, T., et al.: The igraph software package for complex network research. InterJ. Complex Syst. 1695(5), 1–9 (2006)

    Google Scholar 

  31. Csardi, G.: igraphdata: A Collection of Network Data Sets for the igraph Package. r package version 1.0.1 (2015)

    Google Scholar 

  32. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI. http://networkrepository.com

  33. Callaway, D.S., Newman, M.E., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85(25), 5468 (2000)

    Article  Google Scholar 

  34. Dombi, J., Dhama, S.: Preference relation and community detection. In: 2019 IEEE 19th International Symposium on Computational Intelligence and Informatics and 7th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics (CINTI-MACRo), pp. 33–36 (2019)

    Google Scholar 

Download references

Acknowledgements

We gratefully thank the University of Szeged for providing financial support for this conference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakshi Dhama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dombi, J., Dhama, S. (2021). Using Preference Intensity for Detecting Network Communities. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications IX. COMPLEX NETWORKS 2020 2020. Studies in Computational Intelligence, vol 943. Springer, Cham. https://doi.org/10.1007/978-3-030-65347-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65347-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65346-0

  • Online ISBN: 978-3-030-65347-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics