Skip to main content

Biological and Environmental Degradations of Polyamides, Polylactic Acid, and Chitin for Future Prospects

  • Chapter
  • First Online:
Catalysis for Clean Energy and Environmental Sustainability
  • 868 Accesses

Abstract

Lately, the development of biobased polymers has been gaining attraction worldwide. Bio-based materials such as polyamide (PA), polylactic acid (PLA), and chitin have been in great demand. They hold great value in a variety of fields including in the automobile industry, packaging materials, as well as biomedical applications. For example, the biodegradable drug-eluting stents with flexibility, high mechanical property, and targeted drug releasing property can replace the conventional ones to prevent restenosis. This chapter presents the recent trends and developments of polyester, polyamide, and chitin and the future scientific challenges in the degradation of these polymers. Moreover, it presents the promising development of polyester, polyamide, and chitin degradation as well as the ways of improving their functionalities and wide range of applications towards the efficient waste management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, Omar MA, Scott SL, Suh S (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8(9):3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635

    Article  CAS  Google Scholar 

  2. Agarwal S (2020) Biodegradable polymers: present opportunities and challenges in providing a microplastic-free environment. Macromol Chem Phys 221:2000017. https://doi.org/10.1002/macp.202000017

    Article  CAS  Google Scholar 

  3. Mülhaupt R (2013) Green polymer chemistry and bio-based plastics: dreams and reality. Macromol Chem Phys 214:159–174. https://doi.org/10.1002/macp.201200439

    Article  CAS  Google Scholar 

  4. Rydz J, Sikorska W, Kyulavska M, Christova D (2015) Polyester-based (bio) degradable polymers as environmentally friendly materials for sustainable development. Int J Mol Sci 16(1):564–596. https://doi.org/10.3390/ijms16010564

    Article  CAS  Google Scholar 

  5. McKeown P, Kamran M, Davidson MG, Jones MD, Román-Ramírez LA, Wood J (2020) Organocatalysis for versatile polymer degradation. Green Chem 22:3721–3726. https://doi.org/10.1039/D0GC01252A

    Article  CAS  Google Scholar 

  6. Ali MA, Kaneko T (2019) Syntheses of aromatic/heterocyclic derived bioplastics with high thermal/mechanical performance. Ind Eng Chem Res 58:15958–15974. https://doi.org/10.1021/acs.iecr.9b00830

    Article  CAS  Google Scholar 

  7. Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed 54:3210–3215. https://doi.org/10.1002/anie.201410770

    Article  CAS  Google Scholar 

  8. Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers—a review. Polish J Environ Stud 19(2):255–266

    Google Scholar 

  9. Rudnik E (2013) Compostable polymer materials: definitions, structures, and methods of preparation. In: Handbook of biopolymers and biodegradable plastics, pp 189–211. https://doi.org/10.1016/B978-008045371-2.50004-4

    Chapter  Google Scholar 

  10. Rydz J, Sikorska W, Kyulavska M, Christova D (2015) Int J Mol Sci 16:564–596. https://doi.org/10.3390/ijms16010564

    Article  CAS  Google Scholar 

  11. Tsui A, Wright ZC, Frank CW (2013) Annu Rev Chem Biomol Eng 4:143–170. https://doi.org/10.1146/annurev-chembioeng-061312-103323

    Article  CAS  Google Scholar 

  12. Luyt AS, Malik SS (2019) Can biodegradable plastics solve plastic solid waste accumulation, plastics to energy: fuel, chemicals, and sustainability implications, plastics to energy. Elsevier, Amsterdam, pp 403–423. https://doi.org/10.1016/B978-0-12-813140-4.00016-9

    Book  Google Scholar 

  13. Agwuncha SC, Sadiku ER, Ibrahim ID, Aderibigbe BA, Owonubi SJ, Agboola O, Reddy AB, Bandla M, Varaprasad K, Bayode BL, Ray SS (2017) Poly(lactic acid) biopolymer composites and nanocomposites for biomedicals and biopackaging applications. In: Handbook of composites from renewable materials, vol 8. Wiley-Scrivener, Hoboken, NJ, pp 135–170. https://doi.org/10.1002/9781119441632.ch153

    Chapter  Google Scholar 

  14. Bari E, Morrell JJ, Sistani A (2019) Durability of natural/synthetic/biomass fiber-based polymeric composites: laboratory and field tests, durability and life prediction in biocomposites. In: Fibre-reinforced composites and hybrid composites, vol 1. Elsevier Woodhead Publishing, Cambridge, pp 15–26. https://doi.org/10.1016/B978-0-08-102290-0.00002-7

    Chapter  Google Scholar 

  15. Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47:89–144. https://doi.org/10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F

    Article  CAS  Google Scholar 

  16. Hu Y, Daoud WA, Cheuk KKL, Lin CSK (2016) Newly developed techniques on polycondensation, ring-opening polymerization and polymer modification: focus on poly(lactic acid). Materials 9:133. https://doi.org/10.3390/ma9030133

    Article  CAS  Google Scholar 

  17. Vouyiouka S, Theodoulou P, Symeonidou A, Papaspyrides CD, Pfaendner R (2013) Solid state polymerization of poly(lactic acid): some fundamental parameters. Polym Degrad Stab 98(12):2473–2481. https://doi.org/10.1016/j.polymdegradstab.2013.06.012

    Article  CAS  Google Scholar 

  18. Takwa M, Wittrup ML, Hult K, Martinelle M (2011) Rational redesign of Candida antarctica lipase B for the ring-opening polymerization of D,D-lactide. Chem Commun 47:7392–7394. https://doi.org/10.1039/c1cc10865d

    Article  CAS  Google Scholar 

  19. Casalini T, Rossi F, Castrovinci A, Perale G (2019) A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol 7:259. https://doi.org/10.3389/fbioe.2019.00259

    Article  Google Scholar 

  20. Roopan SM, Surendra TV et al (2015) Preparation and properties of biopolymers: a critical review. In: Thakur VK, Thakur MK (eds) Handbook of polymers for pharmaceutical technologies: structure and chemistry, vol 3. Wiley-Scrivener, Hoboken, NJ, pp 541–553

    Chapter  Google Scholar 

  21. Poupart R, Haider A, Babinot J, Kang I-K, Malval J-P, Lalevée J, Andalloussi SA, Langlois V, Versace DL (2015) Photoactivable surface of natural poly(3-hydroxybutyrate-co-3-hydroxyvalerate) for antiadhesion applications. ACS Biomater Sci Eng 1(7):525–538. https://doi.org/10.1021/acsbiomaterials.5b00002

    Article  CAS  Google Scholar 

  22. Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple β-Ketothiolases mediate poly(β-Hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180(8):1979–1987. https://doi.org/10.1128/JB.180.8.1979-1987.1998

    Article  CAS  Google Scholar 

  23. Fuentes MAV, Thakur S, Wu F, Misra M, Gregori S, Mohanty AK (2020) Study on the 3D printability of poly (3-hydroxybutyrate-co-3-hydroxy valerate)/poly(lactic acid) blends with chain extender using fused filament fabrication. Sci Rep 10:11804. https://doi.org/10.1038/s41598-020-68331-5

    Article  CAS  Google Scholar 

  24. Meereboer KW, Misra M, Mohanty AK (2020) Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem 22:5519–5558. https://doi.org/10.1039/D0GC01647K

    Article  CAS  Google Scholar 

  25. McKeen LW (2017) 8—Polyamides (Nylons). In: McKeen L (ed) Plastics design library, 4th edn. William Andrew Publishing, Burlington, MA, pp 187–227. https://doi.org/10.1016/B978-0-12-813292-0.00008-3

    Chapter  Google Scholar 

  26. Kobayashi S, Mullen K (2015) Encyclopedia of polymeric nanomaterials. In: Ali MA (ed) Polyamide syntheses. Springer, Berlin, pp 1750–1762

    Google Scholar 

  27. Gong X, Chen X, Zhou Y (2018) Advanced weaving technologies for high-performance fabrics. In: McLoughlin J, Sabir T (eds) Woodhead publishing series in textiles. Woodhead Publishing, Cambridge, pp 75–112. https://doi.org/10.1016/B978-0-08-100904-8.00004-3

    Chapter  Google Scholar 

  28. Su WF (2013) In: Su WF (ed) Step polymerization BT—principles of polymer design and synthesis. Springer, Berlin, pp 111–136. https://doi.org/10.1007/978-3-642-38730-2_6

    Chapter  Google Scholar 

  29. Jiang Y, Loos K (2016) Enzymatic synthesis of biobased polyesters and polyamides. Polymers 8(7):243. https://doi.org/10.3390/polym8070243

    Article  CAS  Google Scholar 

  30. Huang SJ, Edelman PG (1995) An overview of biodegradable polymers and biodegradation of polymers. In: Scott G, Gilead D (eds) Degradable polymers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0571-2_2

    Chapter  Google Scholar 

  31. Misra M, Panday JK (eds) (2015) Biocomposites: design and mechanical performance. Woodhead Publishing, Cambridge. https://doi.org/10.1016/C2014-0-02693-7

    Book  Google Scholar 

  32. Hu X, Zhu N, Fang Z, Guo K (2017) Continuous flow ring-opening polymerizations. React Chem Eng 2:20–26. https://doi.org/10.1039/C6RE00206D

    Article  CAS  Google Scholar 

  33. Becker G, Wurm FR (2018) Functional biodegradable polymers via ring-opening polymerization of monomers without protective groups. Chem Soc Rev 47:7739–7782

    Article  CAS  Google Scholar 

  34. Yamano N, Kawasaki N, Ida S, Nakayama Y, Nakayama A (2017) Biodegradation of polyamide 4 in vivo. Polym Degrad Stab 137:281–288

    Article  CAS  Google Scholar 

  35. Negoro S (2005) Biodegradation of nylon and other synthetic polyamides. Biopolymers Online. https://doi.org/10.1002/3527600035.bpol9018

  36. Ghosh M, Roy SK, Kar AB (1975) Effect of a copper intrauterine contraceptive device and nylon suture on the estradiol 17β-6, 7-H3 and progesterone 1, 2-H3 in the rat uterus. Contraception 11:45–51. https://doi.org/10.1016/0010-7824(75)90049-9

    Article  CAS  Google Scholar 

  37. Kyulavska M, Toncheva-Moncheva N, Rydz J (2019) Biobased polyamide ecomaterials and their susceptibility to biodegradation. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_126

    Chapter  Google Scholar 

  38. Smith R, Oliver C, Williams DF (1987) The enzymatic degradation of polymers in vitro. J Biomed Mater Res 21:991–1003. https://doi.org/10.1002/jbm.820210805

    Article  CAS  Google Scholar 

  39. Ali MA, Kaneko T (2017) Microbe-derived Itaconic acid: novel route to biopolyamides. Microbial applications. Springer-Verlag, Berlin, pp 279–289. https://doi.org/10.1007/978-3-319-52669-0_15

    Book  Google Scholar 

  40. Lee J, Seo WG, Kim J et al (2017) Amide-based oligomers for low-viscosity composites of polyamide 66. Macromol Res 25:1000–1006. https://doi.org/10.1007/s13233-017-5129-2

    Article  CAS  Google Scholar 

  41. Kadokawa JI (2018) Enzymatic preparation of functional polysaccharide hydrogels by phosphorylase catalysis. Pure Appl Chem 90(6):1045. https://doi.org/10.1515/pac-2017-0802

    Article  CAS  Google Scholar 

  42. Shamshina JL, Berton P, Rogers RD (2019) Advances in functional chitin materials: a review. ACS Sustain Chem Eng 7(7):6444–6457. https://doi.org/10.1021/acssuschemeng.8b06372

    Article  CAS  Google Scholar 

  43. Nielsen UN, Ayres E, Wall DH, Bardgett RD (2011) Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. Eur J Soil Sci 62:105–116. https://doi.org/10.1111/j.1365-2389.2010.01314.x

    Article  CAS  Google Scholar 

  44. Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B (2013) The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 11:497–504. https://doi.org/10.1038/nrmicro3050

    Article  CAS  Google Scholar 

  45. Jardine A, Sayed S (2016) Challenges in the valorisation of chitinous biomass within the biorefinery concept. Curr Opin Green Sustain Chem 2:34–39. https://doi.org/10.1016/j.cogsc.2016.09.007

    Article  Google Scholar 

  46. Berton P, Shamshina JL, Ostadjoo S, King CA, Rogers RD (2018) Enzymatic hydrolysis of ionic liquid-extracted chitin. Carbohydr Polym 199:228–235. https://doi.org/10.1016/j.carbpol.2018.07.014

    Article  CAS  Google Scholar 

  47. Alvarez-Vasco C, Zhang X (2013) Alkaline hydrogen peroxide pretreatment of softwood: hemicellulose degradation pathways. Bioresour Technol 150:321–327. https://doi.org/10.1016/j.biortech.2013.10.020

    Article  CAS  Google Scholar 

  48. BelHaaj S, Magnin A, Petrier C, Boufi S (2013) Starch nanoparticles formation via high power ultrasonication. Carbohydr Polym 92:1625–1632. https://doi.org/10.1016/j.carbpol.2012.11.022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, M.A., Singh, S., Singh, M., Joshi, G. (2021). Biological and Environmental Degradations of Polyamides, Polylactic Acid, and Chitin for Future Prospects. In: Pant, K.K., Gupta, S.K., Ahmad, E. (eds) Catalysis for Clean Energy and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-030-65017-9_4

Download citation

Publish with us

Policies and ethics