Skip to main content

Genomic Vaccines for Pandemic Diseases in Times of COVID-19: Global Trends and Patent Landscape

  • Chapter
  • First Online:
Bio#Futures

Abstract

This chapter provides an analysis of global trends in genomic vaccines, a radical innovation breakthrough (RIB), from technological foresight and pandemic preparedness perspectives, crucial in times of COVID-19. From this conceptual framework, the state-of-the-art and technological prospects for these genomic vaccines are examined, based on a search on scientific publications and on patents for the period 2010–2020, presenting the vaccine patent landscape for the period. This search provides an overview of recent breakthroughs in genomic vaccines and two other related RIBs, gene editing and gene therapy, and identifies novel strategies that could positively contribute to the development of future genomic vaccines to pandemic diseases and COVID-19. Our results evidence in the last decade extraordinary advances in genetic approaches, gene editing and gene therapy, and the rapid development of innovative DNA/RNA vaccines for the prevention and immunotherapy of an extensive diversity of diseases, from the neglected infectious ones to cancer therapy. These results highlight the flexibility of vaccine technological platforms, crucial for response to pandemics and COVID-19, including hepatitis B, varicella, chronic obstructive pulmonary disease, autoimmune diseases – systemic lupus erythematosus, lupus nephritis, and autoimmune myasthenia gravis – and finally a new nucleic acid sequence for immunogenicity to SARS-CoV-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alencar MSM, Porter AL, Antunes AMS. Nanopatenting patterns in relation to product life cycle. Technol Forecast Soc Chang. 2007. https://doi.org/10.1016/j.techfore.2007.04.002.

  • Anasir MI, Poh CL. Structural vaccinology for viral vaccine design. Front Microbiol. 2019. https://doi.org/10.3389/fmicb.2019.00738.

  • Antunes A, Canongia C. Technological foresight and technological scanning for identifying priorities and opportunities: The biotechnology and health sector. Foresight 2006. https://doi.org/10.1108/14636680610703072.

  • Antunes MSA and Magalhães JL (org.), Patenteamento e prospecção tecnológica no setor farmacêutico [Patenting and technological foresight in the pharmaceutical sector], Rio de Janeiro, Interciência, UFRJ, 2008.

    Google Scholar 

  • Arya B, Markham R (2014) Vaccines for protection from and treatment of Alzheimer’s disease. US Patent 2014199338, 10 January 2014

    Google Scholar 

  • Bahl K, Bett AJ, Ciaramella G, Espeseth A, Wang D (2018) Respiratory syncytial virus vaccine. WO Patent 2018170260, 15 March 2018

    Google Scholar 

  • Beckett CG, Tjaden J, Burgess T, Danko JR, Tamminga C, Simmons M, et al. Evaluation of a prototype dengue-1 DNA vaccine in a Phase 1 clinical trial. Vaccine 2011. https://doi.org/10.1016/j.vaccine.2010.11.050.

  • Benihoud K, Lanzi A, Perricaudet M (2011) Adenovirus vaccine vectors. WO Patent 2012150478, 28 April 2011

    Google Scholar 

  • Brito L, Chan M, Geall A, O'hagan D, Singh M (2012) Oil-in-water emulsions that contain nucleic acids. WO Patent 2013006834, 6 July 2012

    Google Scholar 

  • Callaway E, Ledford H (2021) How to redesign COVID vaccines so they protect against variants. Nature 590, 15–16. https://doi.org/10.1038/d41586-021-00241-6

  • Campino S, Marin-Menendez A, Kemp A, Cross N, Drought L, Otto TD, et al. A forward genetic screen reveals a primary role for Plasmodium falciparum Reticulocyte Binding Protein Homologue 2a and 2b in determining alternative erythrocyte invasion pathways. PLoS Pathog. 2018. https://doi.org/10.1371/journal.ppat.1007436.

  • Cashman KA, Wilkinson ER, Shaia CI, Facemire PR, Bell TM, Bearss JJ, et al. A DNA vaccine delivered by dermal electroporation fully protects cynomolgus macaques against Lassa fever. Hum Vaccin Immunother. 2017. https://doi.org/10.1080/21645515.2017.1356500

  • Chaparro R, Low CM, Ross J, Seidel RD (2018) T-Cell modulatory multimeric polypeptide with conjugation sites and methods of use thereof. WO Patent 2019051127, 6 September 2018

    Google Scholar 

  • Chen L, Yang C, Liu X (2020a) New nucleic acid sequence used for expressing polypeptide causing immunogenicity to novel coronavirus Sars-Cov-2 by E.G. inducing immune response in human body, generating bioreporters, and regulating gene function. CN Patent 110951756, 23 February 2020.

    Google Scholar 

  • Chen L, Yang C, Liu X (2020b) Vaccine composition useful for preventing severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection, and inducing immune response in human body, comprises nucleic acid sequence comprising specific base pair sequence. CN Patent 110974950, 5 March 2020.

    Google Scholar 

  • Cheng X, Wang G, Zhang Y, Zhou G (2016) CXCL13 (Chemokine(C-X-C Motif) Ligand 13) DNA vaccine and application thereof. CN Patent 105797147, 7 April 2016.

    Google Scholar 

  • Ciaramella G (2018) Varicella zoster virus (VZV) Vaccine. WO Patent 2018170270, 15 March 2018

    Google Scholar 

  • Ciaramella G, John S (2017) Human cytomegalovirus vaccine. WO Patent 2018075980, 20 October 2017

    Google Scholar 

  • Correia BE, Schief WR (2013) Epitope- scaffold immunogens against respiratory syncytial virus (RSV). WO Patent 2013152274, 5 April 2013

    Google Scholar 

  • Cohen J (2021) South Africa suspends use of AstraZeneca´s COVID-19 vaccine after it fails to clearly stop virus variant. Science 2021, published online on Jan. 28. https://doi.org/10.1126/science.abg9559

  • Donin NM, Lenis AT, Holden S, Drakaki A, Pantuck A, Belldegrun A, et al. Immunotherapy for the Treatment of Urothelial Carcinoma. J Urol. 2017. https://doi.org/10.1016/j.juro.2016.02.3005.

  • Dolgin E (2021) How COVID unlocked the power of RNA. Vaccine research and development might never be the same again. Nature 2021. https://www.nature.com/articles/d41586-021-00019-w

  • Duperret EK, Liu S, Paik M, Trautz A, Stoltz R, Liu X, et al. A Designer Cross-reactive DNA Immunotherapeutic Vaccine that Targets Multiple MAGE-A Family Members Simultaneously for Cancer Therapy. Clin Cancer Res. 2018. https://doi.org/10.1158/1078-0432.CCR-18-1013.

  • Duperret EK, Perales-Puchalt A, Stoltz R, Hiranjith GH, Mandloi N, Barlow J, et al. A synthetic DNA, multi-neoantigen vaccine drives predominately MHC Class I CD8+ T-cell responses, impacting tumor challenge. Cancer Immunol Res. 2019. https://doi.org/10.1158/2326-6066.CIR-18-0283.

  • Dupuy LC, Richards MJ, Ellefsen B, Chau L, Luxembourg A, Hannaman D, et al. A DNA vaccine for Venezuelan equine encephalitis virus delivered by intramuscular electroporation elicits high levels of neutralizing antibodies in multiple animal models and provides protective immunity to mice and nonhuman primates. Clin Vaccine Immunol. 2011. https://doi.org/10.1128/CVI.00030-11.

  • Fang Z, Wang Y, Fang H, Xu Q, Wu J, Zhang B, Wang H, Tao R, Xie D (2014) Simple and convenient method for preparing periodic Brugia malayi M29 epitope gene protein vaccine. CN Patent 106344914, 5 November 2014.

    Google Scholar 

  • Finocchiaro LME, Agnetti L, Fondello C, Glikin GC. Combination of cytokine-enhanced vaccine and chemo-gene therapy as surgery adjuvant treatments for spontaneous canine melanoma. Gene Ther. 2019. https://doi.org/10.1038/s41434-019-0066-7.

  • Finocchiaro LME, Spector AIM, Agnetti L, Arbe MF, Glikin GC. Combination of suicide and cytokine gene therapies as surgery adjuvant for canine mammary carcinoma. Vet Sci. 2018. https://doi.org/10.3390/vetsci5030070.

  • Fotin-Mleczek M, Fiedler K, Kowalczyk A, Heidenreich R (2018) Cancer RNA-Vaccine. WO Patent 2017EP66676, 3 July 2018

    Google Scholar 

  • Gao H, Qin L, Wang X, Qi X, Wang Y, Gao Y (2012) DNA vaccine for expressing avian reticuloendotheliosis virus gp90 gene as well as establishment method and application of gene. CN Patent 102988969, 28 November 2012.

    Google Scholar 

  • Gary EN, Kathuria N, Makurumidze G, Curatola A, Ramamurthi A, Bernui ME, et al. CCR10 expression is required for the adjuvant activity of the mucosal chemokine CCL28 when delivered in the context of an HIV-1 Env DNA vaccine. Vaccine 2020. https://doi.org/10.1016/j.vaccine.2020.01.023.

  • Glanville JE (2013) Epitope focusing by variable effective antigen surface concentration. WO Patent 2013177214, 21 May 2013

    Google Scholar 

  • Global Alliance for Vaccines and Immunizations. Sustainable Development Goals. 2018 https://www.gavi.org/about/ghd/sdg/. Accessed 5 Apr 2019.

  • Guo H, Hao R, Qian H, Sun S, Sun D, Yin H, et al. Upconversion nanoparticles modified with aminosilanes as carriers of DNA vaccine for foot-and-mouth disease. Appl Microbiol Biotechnol. 2012. https://doi.org/10.1007/s00253-012-4042-z.

  • Harris E. (2020). Cell and Gene and COVID-19. Cell and Gene. March 24, 2020. Available: https://www.cellandgene.com/doc/cell-gene-and-covid-0001

  • Heidenreich R, Fiedler K, Fotin-Mleczek M, Kowalczyk A, Elbers K, Wurm M (2018) RNA vaccine and immune checkpoint inhibitors for combined anticancer therapy. WO Patent 2017EP56427, 16 March 2018

    Google Scholar 

  • Hoeksema F, Karpilow J, Luitjens A, Lagerwerf F, Havenga M, Groothuizen M, et al. Enhancing viral vaccine production using engineered knockout vero cell lines – A second look. Vaccine 2018. https://doi.org/10.1016/j.vaccine.2018.03.010.

  • Homma A & Possas C (2020) Desenvolvimento e produção da vacina SARS-CoV-2. Notas complementares (Development and production of SARS-CoV-2 Vaccine. Complementary Notes) In Homma A, Possas C, Noronha JC, Gadelha P. Vacina e Vacinação no Brasil: Horizontes Para Os Próximos 20 Anos (Vaccine and Vaccination in Brazil: Horizons for the next 20 years). Edições Livres 2020, Rio de Janeiro.

    Google Scholar 

  • Hu Y, Sun L, Sun Y (2012) Streptococcus Iniae Trivalent DNA vaccine and construction method thereof. CN Patent 102716499, 16 May 2012.

    Google Scholar 

  • Jia R, Wang W, Wang Y, Xu Y, Zhang L, Yan J, Yu J, Zhang W (2014) broad-spectrum anti-tumor double-plasmid reproducible DNA vaccine. CN Patent 103948944, 19 May 2014.

    Google Scholar 

  • Jia R, Xu Y, Zhang L, Xiao Y, Yan J, Wang Y, Yu J, Zhu X, Zhang W (2013) Replicon DNA (Deoxyribonucleic Acid) vaccine for treating chronic hepatitis B. CN Patent 103239717, 15 May 2013.

    Google Scholar 

  • Jiang S, Lu L, Wang Q, Dai Y (2017) HIV vaccine and preparation method thereof. CN Patent 201710431893, 9 June 2017.

    Google Scholar 

  • Jiao P, Liao M, Song H (2016) H9 subtype bird flu DNA vaccine and preparing method thereof. CN Patent 201610237685, 14 April 2016.

    Google Scholar 

  • Jing Z, Lin G, Qiu C, Zheng F (2012) Brucella deoxyribonucleic acid (DNA) vaccine as well as construction method and application thereof. CN Patent 102772793, 30 May 2012.

    Google Scholar 

  • Johns Hopkins University, Coronavirus Resource Center. COVID-19 Dashboard by the Center for Systems Science and Engineering. Global confirmed cases and deaths. https://coronavirus.jhu.edu/map.html. Accessed 12 May 2020.

  • Kalomoiris S, Lawson J, Chen RX, Bauer G, Nolta JA, Anderson JS. CD25 preselective anti-HIV vectors for improved HIV gene therapy. Hum Gene Ther Methods. 2012. https://doi.org/10.1089/hgtb.2012.142.

  • Kamran N, Calinescu A, Candolfi M, Chandran M, Mineharu Y, Asad AS, et al. Recent advances and future of immunotherapy for glioblastoma. Expert Opin Biol Ther. 2016. https://doi.org/10.1080/14712598.2016.1212012.

  • Kyutoku M, Nakagami H, Koriyama H, Nakagami F, Morishita R (2016) DNA vaccine containing specific epitope of apolipoprotein (A). US Patent 20160303211, 1 July 2016

    Google Scholar 

  • Legarreta Solaguren L, De La Fuente Martínez I, Martínez Fernández L, Milanic, M (2014) Method for designing a vaccine. WO Patent 2015082745, 2 December 2014

    Google Scholar 

  • Li J, Arévalo MT, Zeng M. Engineering influenza viral vectors. Bioengineered. 2013. https://doi.org/10.4161/bioe.21950.

  • Li J, Cao J, Liu X, Li L, Liu Y (2018) Vibrio mimicus oral target epitope gene vaccine and preparation method and application thereof. CN Patent 20181060036, 22 January 2018.

    Google Scholar 

  • Li Y, Liu N, Wang Y, Zhang L, Xiao Y, Yan J, Yu J, Zhang W, Tian R (2014) Reproducible kidney cancer therapeutic DNA vaccine. CN Patent 103948943, 19 May 2014.

    Google Scholar 

  • Liao Y, Chen X, Wu H, Qiu Z, Liao M (2019) Chimeric bivalent blood-pressure-reduction vaccine for human vascular smooth muscle cell L-type calcium channels and angiotensin 1-type receptors and application thereof. CN Patent 109663124, 14 February 2019.

    Google Scholar 

  • Liu W, Wu X, Xu L, Yang Z (2013) Tumor nucleic acid vaccine based on tissue factor as well as preparation method and application of vaccine. CN Patent 201310405991, 9 September 2013.

    Google Scholar 

  • Lorenzi JCC, Trombone APF, Rocha CD, Almeida LP, Lousada RL, Malardo T, et al. Intranasal vaccination with messenger RNA as a new approach in gene therapy: Use against tuberculosis. BMC Biotechnol. 2010. https://doi.org/10.1186/1472-6750-10-77.

  • Lu S, Zhang Zhe, Du P, Chard LS, Yan W, Khouri M El, et al. A virus-infected, reprogrammed somatic cell–derived tumor cell (VIREST) vaccination regime can prevent initiation and progression of pancreatic cancer. Clin Cancer Res. 2020. https://doi.org/10.1158/1078-0432.CCR-19-1395.

  • Lubenau H (2016) Novel Cmv Pp65 targeting DNA vaccine for cancer immunotherapy. EP Patent 20150001802, 16 June 2016

    Google Scholar 

  • Lubenau H (2017) Process for the production of a DNA vaccine for cancer immunotherapy. EP Patent 20160001550, 12 July 2017

    Google Scholar 

  • Lubenau H (2018) Novel Pd-L1 targeting DNA vaccine for cancer immunotherapy. EP Patent 20170161666, 16 March 2018

    Google Scholar 

  • Lubenau H (2019) Neoantigen targeting DNA vaccine for combination therapy. EP Patent 20180192782, 4 September 2019

    Google Scholar 

  • Markham R (2013) Methods and compositions for preventing a condition. WO Patent 2014028644, 14 August 2013

    Google Scholar 

  • Maruf M, Brancato SJ, Agarwal PK. Nonmuscle invasive bladder cancer: a primer on immunotherapy. Cancer Biol Med. 2016. https://doi.org/10.20892/j.issn.2095-3941.2016.0020.

  • McCoy JR, Mendoza JM, Spik KW, Badger C, Gomez AF, Schmaljohn CS, et al. A multi-head intradermal electroporation device allows for tailored and increased dose DNA vaccine delivery to the skin. Hum Vaccin Immunother. 2014. https://doi.org/10.4161/hv.29671.

  • Moleirinho MG, Silva RJS, Alves PM, Carrondo MJT, Peixoto C. Current challenges in biotherapeutic particles manufacturing. Expert Opin Biol Ther. 2019. https://doi.org/10.1080/14712598.2020.1693541.

  • Morishita R, Nakagami H, Koriyama H, Nakagami F, Yoshida N (2012) DNA Vaccine. US Patent 20140099335, 13 April 2012

    Google Scholar 

  • Muthumani K, Falzarano D, Reuschel EL, Tingey C, Flingai S, Villarreal DO, et al. A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci Transl Med. 2015. https://doi.org/10.1126/scitranslmed.aac7462.

  • Nakagami H, Kyutoku M, Morishita R, Tomioka H (2013) DNA vaccine containing VEGF-specific epitope and/or angiopoietin-2-specific epitope. US Patent 20150202271, 28 August 2013

    Google Scholar 

  • Orr-Burks N, Murray J, Wu W, Kirkwood CD, Todd K V., Jones L, et al. Gene-edited vero cells as rotavirus vaccine substrates. Vaccine X. 2019. https://doi.org/10.1016/j.jvacx.2019.100045.

  • Packiam VT, Werntz RP, Steinberg GD. Current Clinical Trials in Non-muscle-Invasive Bladder Cancer: Heightened Need in an Era of Chronic BCG Shortage. Curr Urol Rep. 2019. https://doi.org/10.1007/s11934-019-0952-y.

  • Phadke M, Saunik S. COVID-19 treatment by repurposing drugs until the vaccine is in sight. Drug Dev Res. 2020. https://doi.org/10.1002/ddr.21666.

  • Possas C, Antunes AMS, Mendes FML, Schumacher SOR, Martins RM, Homma A (2015) Access to new technologies in multipatented vaccines: challenges for Brazil. Nat Biotechnol. https://doi.org/10.1038/nbt.3244.

  • Rodrigues MM, Soares IS. Gene-therapy for malaria prevention. Trends Parasitol. 2014. https://doi.org/10.1016/j.pt.2014.09.005.

  • Serruto D, Rappuoli R. Post-genomic vaccine development. FEBS Lett. 2006. https://doi.org/10.1016/j.febslet.2006.04.084.

  • Shan J, Du Y, Cheng G, Jia P, Liu H, Wang Y, Xu Q, Wei J (2015) Application of chitosan oligosaccharide in preparing vaccine adjuvant and vaccine composition. CN Patent 104906574, 25 June 2015.

    Google Scholar 

  • Shaw AR, Suzuki M. Immunology of Adenoviral Vectors in Cancer Therapy. Mol Ther Methods Clin Dev. 2019. https://doi.org/10.1016/j.omtm.2019.11.001.

  • Siddiqui MR, Grant C, Sanford T, Agarwal PK. Current clinical trials in non–muscle invasive bladder cancer. Urol Oncol. 2017. https://doi.org/10.1016/j.urolonc.2017.06.043.

  • Siefker-Radtke A. Bladder cancer: Can we move beyond chemotherapy? Curr Oncol Rep. 2010. https://doi.org/10.1007/s11912-010-0104-5.

  • Smietanka K, Florys K, Gora-Sochacka A, Gromadzka B, Minta Z, Sanczyafska V, Sirko A, Stachyra A, Szewczyk B, Zagorski-Ostoja W, Saczynska V, Sawicka R, Bednarczyk M, Lakota P, Asmietanka K, Zagorski-Ostoja WW (2012) DNA vaccine, method of inducing the immune response, method of immunisation, antibodies specifically recognising the H5 haemagglutinin of an influenza virus and use of the DNA vaccine. US Patent 20140255343, 21 September 2012

    Google Scholar 

  • Sun L, Li M (2015) Application of turbot CD83 molecules serving as vaccine adjuvant. CN Patent 104689313, 4 March 2015.

    Google Scholar 

  • Sun L, Zhang J (2013) Application of heat shock protein 70 as immunoadjuvant. CN Patent 103405763, 15 July 2013.

    Google Scholar 

  • Suschak JJ, Bagley K, Six C, Shoemaker CJ, Kwilas S, Spik KW, et al. The genetic adjuvant IL-12 enhances the protective efficacy of a DNA vaccine for Venezuelan equine encephalitis virus delivered by intramuscular injection in mice. Antiviral Res. 2018. https://doi.org/10.1016/j.antiviral.2018.09.014.

  • Tang N, Zhang Y, Pedrera M, Chang P, Baigent S, Moffat K, et al. A simple and rapid approach to develop recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 system. Vaccine 2018. https://doi.org/10.1016/j.vaccine.2017.12.025.

  • Tang N, Zhang Y, Sadigh Y, Moffat K, Shen Z, Nair V, et al. Generation of a triple insert live avian herpesvirus vectored vaccine using CRISPR/Cas9-based gene editing. Vaccines 2020. https://doi.org/10.3390/vaccines8010097.

  • Thanh Le T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020.

    Google Scholar 

  • United Nations Development Programme (2016). 2030 Sustainable Development Goals. United Nations, Geneva.

    Google Scholar 

  • Villarreal DO, Weiner DB. IL-33 isoforms: Their future as vaccine adjuvants? Expert Rev Vaccines. 2015. https://doi.org/10.1586/14760584.2015.1011135.

  • Voss JE, Gonzalez-Martin A, Andrabi R, Fuller RP, Murrell B, McCoy LE, et al. Reprogramming the antigen specificity of B cells using genome-editing technologies. ELife. 2019. https://doi.org/10.7554/eLife.42995.

  • Walters JN, Ferraro B, Duperret EK, Kraynyak KA, Chu J, Saint-Fleur A, et al. A Novel DNA Vaccine Platform Enhances Neo-antigen-like T Cell Responses against WT1 to Break Tolerance and Induce Anti-tumor Immunity. Mol Ther. 2017. https://doi.org/10.1016/j.ymthe.2017.01.022.

  • Wang Y, Wu H, Xu Y, Zhang L, Yan J, Yu J, Zhu X, Zhang W (2013) Fermentation medium and method for producing plasmid DNA vaccine pSVK-CAVA for treatment of melanoma by fermentation medium. CN patent 103952367, 16 April 2013.

    Google Scholar 

  • Warnke P, Cuhls K, Schmoch, Daniel L, Andreescu et al. 100 Radical Innovation Breakthroughs for the Future, 2019.

    Google Scholar 

  • Wessels HH., Méndez-Mancilla A., Guo X, Legut M, Daniloski Z. and Sanjana NE. (2020). Massively parallel Cas13 screens reveal principles for guide RNA design. Nat Biotechnol. 2020 Jun;38(6):722-727. https://doi.org/10.1038/s41587-020-0456-9

  • World Health Organization, WHO. Coronavirus disease (COVID-19) Situation. 2020a. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200512-covid-19-sitrep-113.pdf?sfvrsn=feac3b6d_2. Accessed 12 May, 2020.

  • World Health Organization. WHO. Draft landscape of COVID-19 candidate vaccines. 2020b. https://www.who.int/blueprint/priority-diseases/key-action/Novel_Coronavirus_Landscape_nCoV_11April2020.PDF?ua=1. Accessed 11 Apr 2020.

  • Wu TC, Hung C (2013) Use of Ar-42 Enhances E7-Specific Cd8+ T-Cell mediated antitumor immunity in conjunction with DNA vaccine. US Patent 201261731225p, 27 November 2013

    Google Scholar 

  • Xi Y, Luo Y (2011) Deoxyribonucleic acid (DNA) vaccine based on B7-1-PE40KDEL exotoxin fusion gene and application thereof. CN Patent 102161998, 14 January 2011

    Google Scholar 

  • Xu Y, Wang L, Zhang L, Yan J, Yu J, Zhu X, Zhang W, Du Z, Wang Y (2013) Vector PSVK based hepatitis B therapeutic plasmid DNA vaccine fermentation production method, and special engineering bacterium and high-yield fermentation culture medium therefor. CN Patent 103396975, 15 May 2013.

    Google Scholar 

  • Yan J, Pankhong P, Shin TH, Obeng-Adjei N, Morrow MP, Walters JN, et al. Highly optimized DNA vaccine targeting human telomerase reverse transcriptase stimulates potent antitumor immunity. Cancer Immunol Res. 2013. https://doi.org/10.1158/2326-6066.CIR-13-0001.

  • Yang Y, Shao Z, Gao J. Antitumor Effect of a DNA Vaccine Harboring Prostate Cancer-Specific Antigen with IL-12 as an Intramolecular Adjuvant. J Mol Microbiol Biotechnol. 2017. https://doi.org/10.1159/000477245.

  • Yongzhi X, Yuan L (2011) Deoxyribonucleic acid (DNA) vaccine based on B7-1-PE40KDEL exotoxin fusion gene and application thereof. CN102161998, filed January 14, 2011

    Google Scholar 

  • Zhang Y, Luo J, Tang N, Teng M, Reddy VRAP, Moffat K, et al. Targeted editing of the pp38 gene in Marek’s disease virus-transformed cell lines using CRISPR/Cas9 System. Viruses 2019. https://doi.org/10.3390/v11050391.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Possas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Possas, C., Antunes, A., Oliveira, A.M., Ramos, M., Schumacher, S.O.R., Homma, A. (2021). Genomic Vaccines for Pandemic Diseases in Times of COVID-19: Global Trends and Patent Landscape. In: Koukios, E., Sacio-Szymańska, A. (eds) Bio#Futures. Springer, Cham. https://doi.org/10.1007/978-3-030-64969-2_12

Download citation

Publish with us

Policies and ethics