Skip to main content

Approximating k-Orthogonal Line Center

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12577))

Abstract

k-orthogonal line center problem computes a set of k axis-parallel lines for a given set of n points such that the maximum among the distances between each point and its nearest line is minimized. In this paper, we design a deterministic bi-criteria approximation algorithm that runs in \(O(k^2n \log n)\) time and returns at most \(\frac{3}{2}k\) lines such that the minimized distance is within 16r. Here r is the minimized distance in the optimal solution with k line centers for the given input.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, P.K., Procopiuc, C.M.: Approximation algorithms for projective clustering. J. Algorithms 46(2), 115–139 (2003)

    Article  MathSciNet  Google Scholar 

  2. Agarwal, P.K., Procopiuc, C.M., Varadarajan, K.R.: A (1+ \(\varepsilon \))-approximation algorithm for 2-line-center. Comput. Geom. 26(2), 119–128 (2003). https://doi.org/10.1007/s10878-012-9579-3

    Article  MathSciNet  MATH  Google Scholar 

  3. Agarwal, P.K., Procopiuc, C.M., Varadarajan, K.R.: Approximation algorithms for a k-line center. Algorithmica 42(3), 221–230 (2005). https://doi.org/10.1007/s00453-005-1166-x

    Article  MathSciNet  MATH  Google Scholar 

  4. Aggarwal, C.C., Wolf, J.L., Yu, P.S., Procopiuc, C., Park, J.S.: Fast algorithms for projected clustering. SIGMOD Rec. 28, 61–72 (1999)

    Article  Google Scholar 

  5. Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimensional spaces. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, SIGMOD 2000, pp. 70–81. Association for Computing Machinery, New York (2000)

    Google Scholar 

  6. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMoD Rec. 27(2), 94–105 (1998)

    Article  Google Scholar 

  7. Calinescu, G., Dumitrescu, A., Karloff, H., Wan, P.J.: Separating points by axis-parallel lines. Int. J. Comput. Geom. Appl. 15, 575–590 (2005)

    Article  MathSciNet  Google Scholar 

  8. Dom, M., Fellows, M.R., Rosamond, F.A.: Parameterized complexity of stabbing rectangles and squares in the plane. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 298–309. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00202-1_26

    Chapter  MATH  Google Scholar 

  9. Feldman, D., Fiat, A., Sharir, M., Segev, D.: Bi-criteria linear-time approximations for generalized k-mean/median/center. In: Proceedings of the Twenty-Third Annual Symposium on Computational Geometry, SCG 2007, pp. 19–26. Association for Computing Machinery, New York (2007)

    Google Scholar 

  10. Frederickson, G.N., Johnson, D.B.: Generalized selection and ranking: sorted matrices. SIAM J. Comput. 13(1), 14–30 (1984)

    Article  MathSciNet  Google Scholar 

  11. Gaur, D.R., Ibaraki, T., Krishnamurti, R.: Constant ratio approximation algorithms for the rectangle stabbing problem and the rectilinear partitioning problem. J. Algorithms 43(1), 138–152 (2002)

    Article  MathSciNet  Google Scholar 

  12. Giannopoulos, P., Knauer, C., Rote, G., Werner, D.: Fixed-parameter tractability and lower bounds for stabbing problems. Comput. Geom. 46(7), 839–860 (2013). euroCG 2009

    Article  MathSciNet  Google Scholar 

  13. Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with straight lines. Discret. Appl. Math. 30(1), 29–42 (1991)

    Article  MathSciNet  Google Scholar 

  14. Jaromczyk, J.W., Kowaluk, M.: The two-line center problem from a polar view: a new algorithm and data structure. In: Akl, S.G., Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 13–25. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60220-8_47

    Chapter  Google Scholar 

  15. Kovaleva, S., Spieksma, F.C.R.: Approximation algorithms for rectangle stabbing and interval stabbing problems. SIAM J. Discret. Math. 20(3), 748–768 (2006)

    Article  MathSciNet  Google Scholar 

  16. Megiddo, N., Tamir, A.: Finding least-distances lines. SIAM J. Algebraic Discret. Methods 4, 207–211 (1983)

    Article  MathSciNet  Google Scholar 

  17. Procopiuc, C.M., Jones, M., Agarwal, P.K., Murali, T.M.: A Monte Carlo algorithm for fast projective clustering. In: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, SIGMOD 2002, pp. 418–427. Association for Computing Machinery, New York (2002)

    Google Scholar 

  18. Renner, W.D., Pugh, N.O., Ross, D.B., Berg, R.E., Hall, D.C.: An algorithm for planning stereotactic brain implants. Int. J. Radiat. Oncol. Biol. Phys. 13(4), 631–637 (1987)

    Article  Google Scholar 

  19. Tansel, B.C., Francis, R.L., Lowe, T.J.: State of the art-location on networks: a survey. Part I: the p-center and p-median problems. Manag. Sci. 29(4), 482–497 (1983)

    Article  Google Scholar 

  20. Zanjirani Farahani, R., Hekmatfar, M.: Facility Location: Concepts, Models, Algorithms and Case Studies. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-7908-2151-2

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakraborty, B., Das, A.K., Das, S., Mukherjee, J. (2020). Approximating k-Orthogonal Line Center. In: Wu, W., Zhang, Z. (eds) Combinatorial Optimization and Applications. COCOA 2020. Lecture Notes in Computer Science(), vol 12577. Springer, Cham. https://doi.org/10.1007/978-3-030-64843-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64843-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64842-8

  • Online ISBN: 978-3-030-64843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics