Skip to main content

Optimal Scenario-Tree Selection for Multistage Stochastic Programming

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12565))

Abstract

We propose an algorithmic strategy for Multistage Stochastic Optimization, to learn a decision policy able to provide feasible and optimal decisions for every possible value of the random variables of the problem. The decision policy is built using a scenario-tree based solution combined with a regression model able to provide a decision also for those scenarios not included in the tree. For building an optimal policy, an iterative scenario generation procedure is used which selects through a Bayesian Optimization process the more informative scenario-tree. Some preliminary numerical tests show the validity of such an approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.aimms.com/english/developers/resources/examples/functional-examples/stochastic-programming/.

  2. 2.

    http://www.gurobi.com.

References

  1. Archetti, F., Candelieri, A.: Bayesian Optimization and Data Science. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24494-1

    Book  MATH  Google Scholar 

  2. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming, 2nd edn. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-0237-4

    Book  MATH  Google Scholar 

  3. Defourny, B., Ernst, D., Wehenkel, L.: Scenario trees and policy selection for multistage stochastic programming using machine learning. INFORMS J. Comput. 25(3), 488–501 (2013)

    Article  MathSciNet  Google Scholar 

  4. Dupacova, J.: Multistage stochastic programs: the state-of-the-art and selected bibliography. Kybernetika 31(2), 151–174 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  6. Heitsch, H., Römisch, W.: Scenario tree generation for multi-stage stochastic programs. In: Bertocchi, M., Consigli, G., Dempster, M. (eds.) Stochastic Optimization Methods in FINANCE and energy, vol. 163, pp. 313–341. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9586-5_14

    Chapter  MATH  Google Scholar 

  7. Hilli, P., Pennanen, T.: Numerical study of discretizations of multistage stochastic programs. Kybernetika 44(2), 185–204 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Høyland, K., Wallace, S.W.: Generating scenario trees for multistage decision problems. Manage. Sci. 47(2), 295–307 (2001)

    Article  Google Scholar 

  9. Keutchayan, J., Gendreau, M., Saucier, A.: Quality evaluation of scenario-tree generation methods for solving stochastic programming problems. CMS 14(3), 333–365 (2017)

    Article  MathSciNet  Google Scholar 

  10. Leövey, H., Römisch, W.: Quasi-Monte Carlo methods for linear two-stage stochastic programming problems. Math. Program. 151(1), 315–345 (2015). https://doi.org/10.1007/s10107-015-0898-x

    Article  MathSciNet  MATH  Google Scholar 

  11. Messina, E., Toscani, D.: Hidden Markov models for scenario generation. IMA J. Manage. Math. 19(4), 379–401 (2008)

    Article  MathSciNet  Google Scholar 

  12. Pflug, G.C., Pichler, A.: Dynamic generation of scenario trees. Comput. Optim. Appl. 62(3), 641–668 (2015). https://doi.org/10.1007/s10589-015-9758-0

    Article  MathSciNet  MATH  Google Scholar 

  13. Powell, W.B: Clearing the jungle of stochastic optimization. In: Bridging Data and Decisions, TutORials in Operations Research, pp. 109–137. INFORMS (2014)

    Google Scholar 

  14. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  15. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)

    Article  Google Scholar 

  16. Shapiro, A.: Monte Carlo sampling methods. Handb. Oper. Res. Manage. Sci. 10, 353–425 (2003)

    MathSciNet  Google Scholar 

  17. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. Society for Industrial and Applied Mathematics (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno G. Galuzzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galuzzi, B.G., Messina, E., Candelieri, A., Archetti, F. (2020). Optimal Scenario-Tree Selection for Multistage Stochastic Programming. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science(), vol 12565. Springer, Cham. https://doi.org/10.1007/978-3-030-64583-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64583-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64582-3

  • Online ISBN: 978-3-030-64583-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics