Skip to main content

AIM in Allergy

  • Reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

Allergic disorders are highly complex and heterogeneous in the sense of pathogenesis, molecular mechanisms, diagnostic tools, and treatment success. The advent of novel systems immunology approaches unraveled new dimensions in the field of precision allergology to improve patient well-being and outcome. However, a major challenge within the field is to deconvolute the vast and diverse datasets to extract innovative and valuable information out of clinically heterogeneous patient populations. Machine-learning algorithms offer new tools to gain insights into high-dimensional omics datasets as well as clinical patient records, providing data-driven methodologies to decipher hidden features and patterns behind big data. These methods have a high translational aspect since newly identified mechanisms or endotypes can lead to innovative treatment approaches. This chapter gives a short overview of the current literature as well as an overview of the used machine-learning approaches in modern allergology. Furthermore, representative examples are given to illustrate the rationale behind the different machine-learning algorithms used in the research field of allergology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murrison LB, Brandt EB, Myers JB, Hershey GKK. Environmental exposures and mechanisms in allergy and asthma development. J Clin Invest [Internet]. 2019;129(4):1504–15. https://doi.org/10.1172/JCI124612.

    Article  Google Scholar 

  2. Strachan DP. Hay fever, hygiene, and household size. BMJ [Internet]. 1989 Nov 18 [cited 2021 Feb 24];299(6710):1259–60. https://www.bmj.com/content/299/6710/1259

  3. Rook GAW, Brunet LR. Microbes, immunoregulation, and the gut. Gut [Internet]. 2005 Mar 1 [cited 2021 Feb 24];54(3):317–20. https://gut.bmj.com/content/54/3/317.1

  4. von Hertzen L, Hanski I, Haahtela T. Natural immunity. EMBO Rep [Internet]. 2011;12(11):1089–93. https://doi.org/10.1038/embor.2011.195.

    Article  CAS  Google Scholar 

  5. Martin SF, Rustemeyer T, Thyssen JP. Recent advances in understanding and managing contact dermatitis. F1000Res [Internet]. 2018;7. https://doi.org/10.12688/f1000research.13499.1

  6. Fyhrquist N, Lehto E, Lauerma A. New findings in allergic contact dermatitis. Curr Opin Allergy Clin Immunol [Internet]. 2014;14(5):430–5. https://doi.org/10.1097/ACI.0000000000000092.

    Article  CAS  Google Scholar 

  7. Borok J, Matiz C, Goldenberg A, Jacob SE. Contact dermatitis in atopic dermatitis children-past, present, and future. Clin Rev Allergy Immunol [Internet]. 2019;56(1):86–98. https://doi.org/10.1007/s12016-018-8711-2.

    Article  CAS  Google Scholar 

  8. Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primers [Internet]. 2018;4(1):1. https://doi.org/10.1038/s41572-018-0001-z.

    Article  Google Scholar 

  9. Lopes JP, Sicherer S. Food allergy: epidemiology, pathogenesis, diagnosis, prevention, and treatment. Curr Opin Immunol [Internet]. 2020;66:57–64. https://doi.org/10.1016/j.coi.2020.03.014.

    Article  CAS  Google Scholar 

  10. Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. Lancet [Internet]. 2018;391(10122):783–800. https://doi.org/10.1016/S0140-6736(17)33311-1.

    Article  Google Scholar 

  11. Allergic Rhinitis and Its Impact on Asthma: ARIA Workshop Report in Collaboration with the World Health Organization [Internet]. 2001. 188 p. https://books.google.com/books/about/Allergic_Rhinitis_and_Its_Impact_on_Asth.html?hl=&id=51wMzQEACAAJ

  12. Yang L, Fu J, Zhou Y. Research progress in atopic march. Front Immunol [Internet]. 2020;11:1907. https://doi.org/10.3389/fimmu.2020.01907

  13. Mersha TB, Afanador Y, Johansson E, Proper SP, Bernstein JA, Rothenberg ME, et al. Resolving clinical phenotypes into endotypes in allergy: molecular and omics approaches. Clin Rev Allergy Immunol [Internet]. 2020. https://doi.org/10.1007/s12016-020-08787-5

  14. Fortino V, Wisgrill L, Werner P, Suomela S, Linder N, Jalonen E, et al. Machine-learning-driven biomarker discovery for the discrimination between allergic and irritant contact dermatitis. Proc Natl Acad Sci USA [Internet]. 2020;117(52):33474–85. https://doi.org/10.1073/pnas.2009192117.

    Article  CAS  Google Scholar 

  15. Parimbelli E, Marini S, Sacchi L, Bellazzi R. Patient similarity for precision medicine: a systematic review. J Biomed Inform [Internet]. 2018;83:87–96. https://doi.org/10.1016/j.jbi.2018.06.001.

    Article  CAS  Google Scholar 

  16. Deliu M, Sperrin M, Belgrave D, Custovic A. Identification of asthma subtypes using clustering methodologies. Pulm Ther [Internet]. 2016;2:19–41. https://doi.org/10.1007/s41030-016-0017-z.

    Article  Google Scholar 

  17. Beaulieu-Jones BK, Greene CS, Pooled Resource Open-Access ALS Clinical Trials Consortium. Semi-supervised learning of the electronic health record for phenotype stratification. J Biomed Inform [Internet]. 2016;64:168–78. https://doi.org/10.1016/j.jbi.2016.10.007.

    Article  Google Scholar 

  18. Loftus TJ, Filiberto AC, Li Y, Balch J, Cook AC, Tighe PJ, et al. Decision analysis and reinforcement learning in surgical decision-making. Surgery [Internet]. 2020;168(2):253–66. https://doi.org/10.1016/j.surg.2020.04.049.

    Article  Google Scholar 

  19. Q. Do STAAD. Reinforcement learning framework to identify cause of diseases – predicting asthma attack case. In: 2019 IEEE international conference on Big Data (Big Data) [Internet]. 2019. p. 4829–38. https://doi.org/10.1109/BigData47090.2019.9006407

  20. Pinart M, Benet M, Annesi-Maesano I, von Berg A, Berdel D, Carlsen KCL, et al. Comorbidity of eczema, rhinitis, and asthma in IgE-sensitised and non-IgE-sensitised children in MeDALL: a population-based cohort study. Lancet Respir Med [Internet]. 2014;2(2):131–40. https://www.sciencedirect.com/science/article/pii/S2213260013702777

    Article  CAS  Google Scholar 

  21. Hill DA, Spergel JM. The atopic march: critical evidence and clinical relevance. Ann Allergy Asthma Immunol [Internet]. 2018;120(2):131–7. https://doi.org/10.1016/j.anai.2017.10.037.

    Article  Google Scholar 

  22. Hill DA, Grundmeier RW, Ramos M, Spergel JM. Eosinophilic esophagitis is a late manifestation of the allergic march. J Allergy Clin Immunol Pract [Internet]. 2018;6(5):1528–33. https://doi.org/10.1016/j.jaip.2018.05.010.

    Article  Google Scholar 

  23. Higdon R, Earl RK, Stanberry L, Hudac CM, Montague E, Stewart E, et al. The promise of multi-omics and clinical data integration to identify and target personalized healthcare approaches in autism spectrum disorders. OMICS [Internet]. 2015;19(4):197–208. https://doi.org/10.1089/omi.2015.0020.

    Article  CAS  Google Scholar 

  24. Ghosh D, Bernstein JA, Khurana Hershey GK, Rothenberg ME, Mersha TB. Leveraging multilayered “Omics” data for atopic dermatitis: a road map to precision medicine. Front Immunol [Internet]. 2018;9:2727. https://www.frontiersin.org/article/10.3389/fimmu.2018.02727

    Article  CAS  Google Scholar 

  25. Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA [Internet]. 2014 Aug 22 [cited 2021 Feb 15]. https://www.pnas.org/content/early/2014/08/21/1412008111

  26. Noval Rivas M, Burton OT, Wise P, Zhang Y-Q, Hobson SA, Garcia Lloret M, et al. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J Allergy Clin Immunol [Internet]. 2013;131(1):201–12. https://doi.org/10.1016/j.jaci.2012.10.026.

    Article  CAS  Google Scholar 

  27. Park HJ, Lee SW, Hong S. Regulation of allergic immune responses by microbial metabolites. Immune Netw [Internet]. 2018;18(1):e15. https://doi.org/10.4110/in.2018.18.e15.

    Article  Google Scholar 

  28. Ho DSW, Schierding W, Wake M, Saffery R, O’Sullivan J. Machine learning SNP based prediction for precision medicine. Front Genet [Internet]. 2019;10:267. https://www.frontiersin.org/article/10.3389/fgene.2019.00267

    Article  CAS  Google Scholar 

  29. Abraham G, Inouye M. Genomic risk prediction of complex human disease and its clinical application. Curr Opin Genet Dev [Internet]. 2015;33:10–6. https://doi.org/10.1016/j.gde.2015.06.005.

    Article  CAS  Google Scholar 

  30. Park J-H, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ, et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet [Internet]. 2010;42(7):570–5. https://doi.org/10.1038/ng.610.

    Article  CAS  Google Scholar 

  31. Han Y, Jia Q, Jahani PS, Hurrell BP, Pan C, Huang P, et al. Genome-wide analysis highlights contribution of immune system pathways to the genetic architecture of asthma. Nat Commun [Internet]. 2020;11(1):1776. https://doi.org/10.1038/s41467-020-15649-3.

    Article  CAS  Google Scholar 

  32. Hu P, Jiao R, Jin L, Xiong M. Application of causal inference to genomic analysis: advances in methodology. Front Genet [Internet]. 2018;9:238. https://www.frontiersin.org/article/10.3389/fgene.2018.00238/full

    Article  Google Scholar 

  33. Xu M, Tantisira KG, Wu A, Litonjua AA, Chu J-H, Himes BE, et al. Genome Wide Association Study to predict severe asthma exacerbations in children using random forests classifiers. BMC Med Genet [Internet]. 2011;12(1):90. https://doi.org/10.1186/1471-2350-12-90.

    Article  Google Scholar 

  34. Gaudillo J, Rodriguez JJR, Nazareno A, Baltazar LR, Vilela J, Bulalacao R, et al. Machine learning approach to single nucleotide polymorphism-based asthma prediction. PLoS One [Internet]. 2019;14(12):e0225574. https://doi.org/10.1371/journal.pone.0225574.

    Article  CAS  Google Scholar 

  35. Ansotegui IJ, Melioli G, Canonica GW, Caraballo L, Villa E, Ebisawa M, et al. IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper. World Allergy Organ J [Internet]. 2020;13(2):100080. https://doi.org/10.1016/j.waojou.2019.100080.

    Article  CAS  Google Scholar 

  36. Hirota T, Nakayama T, Sato S, Yanagida N, Matsui T, Sugiura S, et al. Association study of childhood food allergy with genome-wide association studies-discovered loci of atopic dermatitis and eosinophilic esophagitis. J Allergy Clin Immunol [Internet]. 2017;140(6):1713–6. https://doi.org/10.1016/j.jaci.2017.05.034.

    Article  Google Scholar 

  37. Prescott S, Allen KJ. Food allergy: riding the second wave of the allergy epidemic. Pediatr Allergy Immunol [Internet]. 2011;22(2):155–60. https://doi.org/10.1111/j.1399-3038.2011.01145.x.

    Article  Google Scholar 

  38. Santos AF, Lack G. Food allergy and anaphylaxis in pediatrics: update 2010–2012. Pediatr Allergy Immunol [Internet]. 2012;23(8):698–706. https://doi.org/10.1111/pai.12025.

    Article  Google Scholar 

  39. Alag A. Machine learning approach yields epigenetic biomarkers of food allergy: a novel 13-gene signature to diagnose clinical reactivity. PLoS One [Internet]. 2019 Jun 19 [cited 2021 Feb 15];14(6):e0218253. https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0218253&type=printable

  40. Martino D, Dang T, Sexton-Oates A, Prescott S, Tang MLK, Dharmage S, et al. Blood DNA methylation biomarkers predict clinical reactivity in food-sensitized infants. J Allergy Clin Immunol [Internet]. 2015;135(5):1319–28.e12. https://doi.org/10.1016/j.jaci.2014.12.1933.

    Article  CAS  Google Scholar 

  41. Martino D, Neeland M, Dang T, Cobb J, Ellis J, Barnett A, et al. Epigenetic dysregulation of naive CD4+ T-cell activation genes in childhood food allergy. Nat Commun [Internet]. 2018;9(1):3308. https://doi.org/10.1038/s41467-018-05608-4.

    Article  CAS  Google Scholar 

  42. Diamandis EP. Cancer biomarkers: can we turn recent failures into success? J Natl Cancer Inst [Internet]. 2010 Oct 6 [cited 2021 Feb 16];102(19):1462–7. https://academic.oup.com/jnci/article/102/19/1462/2515934

  43. García-Gutiérrez MS, Navarrete F, Sala F, Gasparyan A, Austrich-Olivares A, Manzanares J. Biomarkers in psychiatry: concept, definition, types and relevance to the clinical reality. Front Psychiatry [Internet]. 2020;11:432. https://www.frontiersin.org/article/10.3389/fpsyt.2020.00432

    Article  Google Scholar 

  44. Torres R, Judson-Torres RL. Research techniques made simple: feature selection for biomarker discovery. J Invest Dermatol [Internet]. 2019;139(10):2068–74.e1. https://doi.org/10.1016/j.jid.2019.07.682.

    Article  CAS  Google Scholar 

  45. Fortino V, Scala G, Greco D. Feature set optimization in biomarker discovery from genome-scale data. Bioinformatics [Internet]. 2020;36(11):3393–400. https://doi.org/10.1093/bioinformatics/btaa144.

    Article  CAS  Google Scholar 

  46. Bieber T, D’Erme AM, Akdis CA, Traidl-Hoffmann C, Lauener R, Schäppi G, et al. Clinical phenotypes and endophenotypes of atopic dermatitis: where are we, and where should we go? J Allergy Clin Immunol [Internet]. 2017;139(4S):S58–64. https://doi.org/10.1016/j.jaci.2017.01.008.

    Article  Google Scholar 

  47. Werfel T, Allam J-P, Biedermann T, Eyerich K, Gilles S, Guttman-Yassky E, et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol [Internet]. 2016;138(2):336–49. https://doi.org/10.1016/j.jaci.2016.06.010.

    Article  CAS  Google Scholar 

  48. Fyhrquist N, Muirhead G, Prast-Nielsen S, Jeanmougin M, Olah P, Skoog T, et al. Microbe-host interplay in atopic dermatitis and psoriasis. Nat Commun [Internet]. 2019;10(1):4703. https://doi.org/10.1038/s41467-019-12253-y.

    Article  CAS  Google Scholar 

  49. Kuruvilla ME, Lee FE-H, Lee GB. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol [Internet]. 2019;56(2):219–33. https://doi.org/10.1007/s12016-018-8712-1.

    Article  Google Scholar 

  50. Fitzpatrick AM, Teague WG, Meyers DA, Peters SP, Li X, Li H, et al. Heterogeneity of severe asthma in childhood: confirmation by cluster analysis of children in the National Institutes of Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program. J Allergy Clin Immunol [Internet]. 2011;127(2):382–9.e1–13. https://doi.org/10.1016/j.jaci.2010.11.015.

    Article  Google Scholar 

  51. Siroux V, Basagaña X, Boudier A, Pin I, Garcia-Aymerich J, Vesin A, et al. Identifying adult asthma phenotypes using a clustering approach. Eur Respir J [Internet]. 2011;38(2):310–7. https://doi.org/10.1183/09031936.00120810.

    Article  CAS  Google Scholar 

  52. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med [Internet]. 2010;181(4):315–23. https://doi.org/10.1164/rccm.200906-0896OC.

    Article  Google Scholar 

  53. Prosperi MCF, Sahiner UM, Belgrave D, Sackesen C, Buchan IE, Simpson A, et al. Challenges in identifying asthma subgroups using unsupervised statistical learning techniques. Am J Respir Crit Care Med [Internet]. 2013;188(11):1303–12. https://doi.org/10.1164/rccm.201304-0694OC.

    Article  Google Scholar 

  54. Donovan BM, Bastarache L, Turi KN, Zutter MM, Hartert TV. The current state of omics technologies in the clinical management of asthma and allergic diseases. Ann Allergy Asthma Immunol [Internet]. 2019;123(6):550–7. https://www.sciencedirect.com/science/article/pii/S108112061931049X

    Article  Google Scholar 

  55. Tyler SR, Bunyavanich S. Leveraging -omics for asthma endotyping. J Allergy Clin Immunol [Internet]. 2019;144(1):13–23. https://doi.org/10.1016/j.jaci.2019.05.015.

    Article  Google Scholar 

  56. Yeh Y-L, Su M-W, Chiang B-L, Yang Y-H, Tsai C-H, Lee YL. Genetic profiles of transcriptomic clusters of childhood asthma determine specific severe subtype. Clin Exp Allergy [Internet]. 2018. https://doi.org/10.1111/cea.13175.

  57. Sinha A, Desiraju K, Aggarwal K, Kutum R, Roy S, Lodha R, et al. Exhaled breath condensate metabolome clusters for endotype discovery in asthma. J Transl Med [Internet]. 2017;15(1):262. https://doi.org/10.1186/s12967-017-1365-7.

    Article  CAS  Google Scholar 

  58. Nicodemus-Johnson J, Myers RA, Sakabe NJ, Sobreira DR, Hogarth DK, Naureckas ET, et al. DNA methylation in lung cells is associated with asthma endotypes and genetic risk. JCI Insight [Internet]. 2016;1(20). https://doi.org/10.1172/jci.insight.90151.

  59. Lee-Sarwar KA, Kelly RS, Lasky-Su J, Zeiger RS, O’Connor GT, Sandel MT, et al. Integrative analysis of the intestinal metabolome of childhood asthma. J Allergy Clin Immunol [Internet]. 2019;144(2):442–54. https://doi.org/10.1016/j.jaci.2019.02.032.

    Article  CAS  Google Scholar 

  60. McGeachie MJ, Dahlin A, Qiu W, Croteau-Chonka DC, Savage J, Wu AC, et al. The metabolomics of asthma control: a promising link between genetics and disease: integrative metabolomics of asthma control. Immun Inflamm Dis [Internet]. 2015;3(3):224–38. https://doi.org/10.1002/iid3.61.

    Article  CAS  Google Scholar 

  61. Perez-Riverol Y, Bai M, da Veiga LF, Squizzato S, Park YM, Haug K, et al. Discovering and linking public omics data sets using the Omics Discovery Index. Nat Biotechnol [Internet]. 2017;35(5):406–9. https://doi.org/10.1038/nbt.3790.

    Article  CAS  Google Scholar 

  62. Chen X, Gururaj AE, Ozyurt B, Liu R, Soysal E, Cohen T, et al. DataMed – an open source discovery index for finding biomedical datasets. J Am Med Inform Assoc [Internet]. 2018;25(3):300–8. https://doi.org/10.1093/jamia/ocx121.

    Article  Google Scholar 

  63. Kim D, Cho S, Tamil L, Song DJ, Seo S. Predicting asthma attacks: effects of indoor PM concentrations on peak expiratory flow rates of asthmatic children. IEEE Access [Internet]. 2020;8:8791–7. https://doi.org/10.1109/ACCESS.2019.2960551.

    Article  Google Scholar 

  64. Yang J, Wang L, Phadke NA, Wickner PG, Mancini CM, Blumenthal KG, et al. Development and validation of a deep learning model for detection of allergic reactions using safety event reports across hospitals. JAMA Netw Open [Internet]. 2020;3(11):e2022836. https://doi.org/10.1001/jamanetworkopen.2020.22836.

    Article  Google Scholar 

  65. Kono N, Arakawa K. Nanopore sequencing: Review of potential applications in functional genomics. Dev Growth Differ [Internet]. 2019;61(5):316–26. https://doi.org/10.1111/dgd.12608.

    Article  Google Scholar 

  66. Palatnick A, Zhou B, Ghedin E, Schatz MC. iGenomics: comprehensive DNA sequence analysis on your Smartphone. Gigascience [Internet]. 2020;9(12). https://doi.org/10.1093/gigascience/giaa138

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanna Fyhrquist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wisgrill, L., Werner, P., Fortino, V., Fyhrquist, N. (2022). AIM in Allergy. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-64573-1_90

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64573-1_90

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64572-4

  • Online ISBN: 978-3-030-64573-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics