Skip to main content

AIM in Interventional Radiology

  • Reference work entry
  • First Online:
Artificial Intelligence in Medicine
  • 401 Accesses

Abstract

Artificial Intelligence applications have recently demonstrated high diagnostic accuracy and increased workflow efficiency in radiology. Machine learning models, particularly deep learning, can perform complex tasks in medical imaging, especially when they are trained with a large amount of high-quality data. For effective realization of the potential of artificial intelligence in interventional radiology, some unique challenges involving data storage, interoperability, adoption of standards, and conflict of interest between physicians and developers need to be addressed. With immense innovation and technological breakthrough, the scope of interventional radiology is continuously increasing in both width and breadth, and so are the opportunities of AI to revolutionize the sector. Artificial intelligence can complement the efforts of the interventional radiologist through decision support, triaging and screening of patients, prevention of error, procedural and periprocedural support, patient monitoring, prognostication of diseases, outcome prediction, image acquisition, image processing, etc. In conjunction with augmented reality systems, it can also help in improving procedural skills of interventional radiology residents and fellows through superior simulation training. Artificial intelligence has a tremendous potential to boost the productivity of radiologists. However, they are unlikely to replace them as there are significant apprehensions regarding the legal accountability, transparency, fairness, equality, bias, or potential misuse by an artificial intelligence system which prevent any independent action or clinical application without the oversight of an expert radiologist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seldinger SI. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta Radiol. 1953;39(5):368–76.

    Article  CAS  PubMed  Google Scholar 

  2. Baum RA, Baum S. Interventional radiology: a half century of innovation. Radiology. 2014;273(2S):S75–91.

    Article  PubMed  Google Scholar 

  3. Taslakian B, Georges Sebaaly M, Al-Kutoubi A. Patient evaluation and preparation in vascular and interventional radiology: what every interventional radiologist should know (Part 1: Patient assessment and laboratory tests). Cardiovasc Intervent Radiol. 2016;39(3):325–33. https://doi.org/10.1007/s00270-015-1228-7.

    Article  PubMed  Google Scholar 

  4. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500–10. https://doi.org/10.1038/s41568-018-0016-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meskó B, Görög M. A short guide for medical professionals in the era of artificial intelligence. npj Digit Med. 2020;3:126.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yadav SS, Jadhav SM. Deep convolutional neural network based medical image classification for disease diagnosis. J Big Data. 2019;6:113.

    Article  Google Scholar 

  7. Morris MA, Saboury B, Burkett B, Gao J, Siegel EL. Reinventing radiology: big data and the future of medical imaging. J Thorac Imaging. 2018;33(1):4–16.

    Article  PubMed  Google Scholar 

  8. Persons KR, Nagels J, Carr C, Mendelson DS, Fischer B, Doyle M. Interoperability and considerations for standards-based exchange of medical images: HIMSS-SIIM Collaborative white paper. J Digit Imaging. 2020;33(1):6–16.

    Article  PubMed  Google Scholar 

  9. Oren O, Gersh BJ, Bhatt DL. Artificial intelligence in medical imaging: switching from radiographic pathological data to clinically meaningful endpoints. Lancet Digit Health. 2020;2(9):e486–8.

    Article  PubMed  Google Scholar 

  10. Lee LI, Kanthasamy S, Ayyalaraju RS, Ganatra R. The current state of artificial intelligence in medical imaging and nuclear medicine. BJR| Open. 2019;1:20190037.

    PubMed  PubMed Central  Google Scholar 

  11. Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, Geis JR, Pandharipande PV, Brink JA, Dreyer KJ. Current applications and future impact of machine learning in radiology. Radiology. 2018;288(2):318–28.

    Article  PubMed  Google Scholar 

  12. Meek RD, Lungren MP, Gichoya JW. Machine learning for the interventional radiologist. Am J Roentgenol. 2019;213(4):782–4.

    Article  Google Scholar 

  13. Kaufman JA, Lee MJ. Vascular and interventional radiology: the requisites e-book. Elsevier Health Sciences; 2013.

    Google Scholar 

  14. Baerlocher MO, Kennedy SA, Ward TJ, Nikolic B, Bakal CW, Lewis CA, Winick AB, Niedzwiecki GA, Haskal ZJ, Matsumoto AH. Society of interventional radiology: resource and environment recommended standards for IR. J Vasc Interven Radiol: JVIR. 2017;28(4):513.

    Article  Google Scholar 

  15. Taslakian B, Ingber R, Aaltonen E, Horn J, Hickey R. Interventional radiology suite: a primer for trainees. J Clin Med. 2019;8(9):1347.

    Article  PubMed Central  Google Scholar 

  16. Annarumma M, Withey SJ, Bakewell RJ, Pesce E, Goh V, Montana G. Automated triaging of adult chest radiographs with deep artificial neural networks. Radiology. 2019;291(1):196–202.

    Article  PubMed  Google Scholar 

  17. Mafeld S, Musing EL, Conway A, Kennedy S, Oreopoulos G, Rajan D. Avoiding and managing error in interventional radiology practice: tips and tools. Can Assoc Radiol J. 2020;71:528–35. https://doi.org/10.1177/0846537119899215.

    Article  PubMed  Google Scholar 

  18. Mafeld S, Oreopoulos G, Musing EL, Chan T, Jaberi A, Rajan D. Sources of error in interventional radiology: how, why, and when. Can Assoc Radiol J. 2020;71:518–27. https://doi.org/10.1177/0846537119899226.

    Article  PubMed  Google Scholar 

  19. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268(1):70.

    Article  PubMed  Google Scholar 

  20. Flin R, Youngson G, Yule S. How do surgeons make intraoperative decisions? BMJ Qual Saf. 2007;16(3):235–9.

    Article  Google Scholar 

  21. Navarrete-Welton AJ, Hashimoto DA. Current applications of artificial intelligence for intraoperative decision support in surgery. Front Med. 2020;14:369–81.

    Article  PubMed  Google Scholar 

  22. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230–43.

    Article  PubMed  PubMed Central  Google Scholar 

  23. McCollough CH, Leng S. Use of artificial intelligence in computed tomography dose optimisation. Ann ICRP. 2020;49:113–25. https://doi.org/10.1177/0146645320940827.

    Article  CAS  PubMed  Google Scholar 

  24. Blanco Sequeiros R, Ojala R, Kariniemi J, Perälä J, Niinimäki J, Reinikainen H, Tervonen O. MR-guided interventional procedures: a review. Acta Radiol. 2005;46(6):576–86.

    Article  PubMed  Google Scholar 

  25. Johnson PM, Recht MP, Knoll F. Improving the speed of MRI with artificial intelligence. Semin Musculoskelet Radiol. 2020;24(1):12. NIH Public Access.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mirchi N, Bissonnette V, Yilmaz R, Ledwos N, Winkler-Schwartz A, Del Maestro RF. The virtual operative assistant: an explainable artificial intelligence tool for simulation-based training in surgery and medicine. PLoS One. 2020;15(2):e0229596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chander Mohan SM. Artificial intelligence in radiology–are we treating the image or the patient? Indian J Radiol Imag. 2018;28(2):137.

    Article  Google Scholar 

  28. Geis JR, Brady AP, Wu CC, Spencer J, Ranschaert E, Jaremko JL, Langer SG, Kitts AB, Birch J, Shields WF, van den Hoven van Genderen R. Ethics of artificial intelligence in radiology: summary of the joint European and North American multisociety statement. Can Assoc Radiol J. 2019;70(4):329–34.

    Article  PubMed  Google Scholar 

  29. European Society of Radiology (ESR). Impact of artificial intelligence on radiology: a EuroAIM survey among members of the European Society of Radiology. Insights Imag. 2019;10(1):105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Datta, S. (2022). AIM in Interventional Radiology. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-64573-1_283

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64573-1_283

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64572-4

  • Online ISBN: 978-3-030-64573-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics