Skip to main content

AIM in Anesthesiology

  • Reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

This chapter focuses on applications of artificial intelligence (AI) in anesthesiology. Anesthesiology is the field of healthcare involved with providing a state of controlled, temporary loss of sensation or awareness that is induced for medical purposes such as a surgical intervention. It may include a combination of various components including analgesia, amnesia, unconsciousness, and muscle relaxation. Anesthesiology is mostly a technical field, heavily protocolized and data-intensive (due to all the monitoring equipment in place), which makes it the perfect environment to deploy AI tools. In this chapter, we review in detail the main applications of AI in the operating room, sorted in four main domains: (1) monitoring of the depth of anesthesia, (2) control of administration of anesthetic drugs (hypnotics, opioids, and/or muscle relaxants), (3) hemodynamic control (mostly titration of fluids and vasopressor therapy), and (4) risk prediction and prediction of events (e.g., predict surgery length or postoperative complications). In addition, we analyzed the degree of maturity of these various technologies. While many of these applications can have a large impact on quality and safety of care surrounding anesthesia, the maturity of these technologies is in general very low, and most of the applications published describe tools that have not received prospective evaluation. Only a handful of randomized trials comparing standard of care to the tandem AI doctor could be identified. Finally, we conclude with an assessment of the current practical implications of AI for practicing anesthesiologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barash PG, et al. Clinical anesthesia, 8e: print + Ebook with multimedia. 8th ed. LWW; 2017.

    Google Scholar 

  2. Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial intelligence in anesthesiology current techniques, clinical applications, and limitations. Anesthesiology. 2020;132(2):379–94. https://doi.org/10.1097/ALN.0000000000002960.

    Article  PubMed  Google Scholar 

  3. Veselis RA, Reinsel R, Sommer S, Carlon G. Use of neural network analysis to classify electroencephalographic patterns against depth of midazolam sedation in intensive care unit patients. J Clin Monit. 1991;7(3):259–67. https://doi.org/10.1007/BF01619271.

    Article  CAS  PubMed  Google Scholar 

  4. Veselis RA, Reinsel R, Wronski M. Analytical methods to differentiate similar electroencephalographic spectra: neural network and discriminant analysis. J Clin Monit. 1993;9(4):257–67. https://doi.org/10.1007/BF02886696.

    Article  CAS  PubMed  Google Scholar 

  5. Ortolani O, et al. EEG signal processing in anaesthesia. Use of a neural network technique for monitoring depth of anaesthesia. Br J Anaesth. 2002;88(5):644–8. https://doi.org/10.1093/bja/88.5.644.

    Article  CAS  PubMed  Google Scholar 

  6. Mirsadeghi M, Behnam H, Shalbaf R, Jelveh Moghadam H. Characterizing awake and anesthetized states using a dimensionality reduction method. J Med Syst. 2016;40(1):13. https://doi.org/10.1007/s10916-015-0382-4.

    Article  CAS  PubMed  Google Scholar 

  7. Benzy VK, Jasmin EA, Koshy RC, Amal F. Wavelet entropy based classification of depth of anesthesia. In: 2016 International conference on computational techniques in information and communication technologies (ICCTICT); 2016. p. 521–4. https://doi.org/10.1109/ICCTICT.2016.7514635.

    Chapter  Google Scholar 

  8. Nagaraj SB, et al. Patient-specific classification of ICU sedation levels from heart rate variability. Crit Care Med. 2017;45(7):e683–90. https://doi.org/10.1097/CCM.0000000000002364.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shalbaf A, Saffar M, Sleigh JW, Shalbaf R. Monitoring the depth of anesthesia using a new adaptive neurofuzzy system. IEEE J Biomed Health Inform. 2018;22(3):671–7. https://doi.org/10.1109/JBHI.2017.2709841.

    Article  PubMed  Google Scholar 

  10. Liu Q, Ma L, Fan S-Z, Abbod MF, Shieh J-S. Sample entropy analysis for the estimating depth of anaesthesia through human EEG signal at different levels of unconsciousness during surgeries. Peer J. 2018;6:e 4817. https://doi.org/10.7717/peerj.4817.

    Article  Google Scholar 

  11. Coşkun M, Guruler H, Istanbullu A, Peker M. Determining the appropriate amount of anesthetic gas using DWT and EMD combined with neural network. J Med Syst. 2015;39:1–10. https://doi.org/10.1007/s10916-014-0173-3.

    Article  Google Scholar 

  12. Ranta SOV, Hynynen M, Räsänen J. Application of artificial neural networks as an indicator of awareness with recall during general anaesthesia. J Clin Monit Comput. 2002;17(1):53–60. https://doi.org/10.1023/a:1015426015547.

    Article  PubMed  Google Scholar 

  13. Ben-Israel N, Kliger M, Zuckerman G, Katz Y, Edry R. Monitoring the nociception level: a multi-parameter approach. J Clin Monit Comput. 2013;27(6):659–68. https://doi.org/10.1007/s10877-013-9487-9.

    Article  PubMed  Google Scholar 

  14. Daccache G, Jeanne M, Fletcher D. The analgesia nociception index: tailoring opioid administration. Anesth Analg. 2017;125(1):15–7. https://doi.org/10.1213/ANE.0000000000002145.

    Article  PubMed  Google Scholar 

  15. Janda M, et al. Design and implementation of a control system reflecting the level of analgesia during general anesthesia. Biomed Tech (Berl). 2013;58(1):1–11. https://doi.org/10.1515/bmt-2012-0090.

    Article  Google Scholar 

  16. Upton HD, Ludbrook GL, Wing A, Sleigh JW. Intraoperative ‘analgesia nociception index’-guided fentanyl administration during sevoflurane anesthesia in lumbar discectomy and laminectomy: a randomized clinical trial. Anesth Analg. 2017;125(1):81–90. https://doi.org/10.1213/ANE.0000000000001984.

    Article  CAS  PubMed  Google Scholar 

  17. Cotoia A, et al. Effects of closed-loop intravenous anesthesia guided by bispectral index in adult patients on emergence delirium: a randomized controlled study. Minerva Anestesiol. 2018;84(4):437–46. https://doi.org/10.23736/S0375-9393.17.11915-2.

    Article  PubMed  Google Scholar 

  18. Joosten A, et al. Anesthetic management using multiple closed-loop systems and delayed neurocognitive recovery: a randomized controlled trial. Anesthesiology. 2020;132(2):253–66. https://doi.org/10.1097/ALN.0000000000003014.

    Article  PubMed  Google Scholar 

  19. Mahr N, et al. Postoperative neurocognitive disorders after closed-loop versus manual target controlled-infusion of propofol and remifentanil in patients undergoing elective major noncardiac surgery: the randomized controlled postoperative cognitive dysfunction-electroencephalographic-guided anesthetic administration trial. Anesth Analg. 2020; https://doi.org/10.1213/ANE.0000000000005278.

  20. Absalom AR, Sutcliffe N, Kenny GN. Closed-loop control of anesthesia using bispectral index: performance assessment in patients undergoing major orthopedic surgery under combined general and regional anesthesia. Anesthesiology. 2002;96(1):67–73. https://doi.org/10.1097/00000542-200201000-00017.

    Article  PubMed  Google Scholar 

  21. Liu N, et al. Feasibility of closed-loop co-administration of propofol and remifentanil guided by the bispectral index in obese patients: a prospective cohort comparison. BJA Br J Anesth. 2015;114(4):605–14. https://doi.org/10.1093/bja/aeu401.

    Article  CAS  Google Scholar 

  22. Lowery C, Faisal A. Towards efficient, personalized anesthesia using continuous reinforcement learning for propofol infusion control. 2013:1414–7. https://doi.org/10.1109/NER.2013.6696208.

  23. Meskin N, Haddad W, Padmanabhan R. Closed-loop control of anesthesia and mean arterial pressure using reinforcement learning. Biomed Signal Process Control. 2015;22:54–64. https://doi.org/10.1016/j.bspc.2015.05.013.

    Article  Google Scholar 

  24. Tsutsui T, Arita S. Fuzzy-logic control of blood pressure through enflurane anesthesia. J Clin Monit. 1994;10(2):110–7. https://doi.org/10.1007/BF02886823.

    Article  CAS  PubMed  Google Scholar 

  25. Zbinden AM, Feigenwinter P, Petersen-Felix S, Hacisalihzade S. Arterial pressure control with isoflurane using fuzzy logic. Br J Anaesth. 1995;74(1):66–72. https://doi.org/10.1093/bja/74.1.66.

    Article  CAS  PubMed  Google Scholar 

  26. Lendl M, Schwarz UH, Romeiser HJ, Unbehauen R, Georgieff M, Geldner GF. Nonlinear model-based predictive control of non-depolarizing muscle relaxants using neural networks. J Clin Monit Comput. 1999;15(5):271–8. https://doi.org/10.1023/a:1009915105434.

    Article  CAS  PubMed  Google Scholar 

  27. Shieh JS, Fan SZ, Chang LW, Liu CC. Hierarchical rule-based monitoring and fuzzy logic control for neuromuscular block. J Clin Monit Comput. 2000;16(8):583–92. https://doi.org/10.1023/a:1012212516100.

    Article  CAS  PubMed  Google Scholar 

  28. Motamed C, Devys J-M, Debaene B, Billard V. Influence of real-time Bayesian forecasting of pharmacokinetic parameters on the precision of a rocuronium target-controlled infusion. Eur J Clin Pharmacol. 2012;68(7):1025–31. https://doi.org/10.1007/s00228-012-1236-3.

    Article  CAS  PubMed  Google Scholar 

  29. Benes J, Giglio M, Brienza N, Michard F. The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials. Crit Care. 2014;18(5):584. https://doi.org/10.1186/s13054-014-0584-z.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Corcoran T, Rhodes JEJ, Clarke S, Myles PS, Ho KM. Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth Analg. 2012;114(3):640–51. https://doi.org/10.1213/ANE.0b013e318240d6eb.

    Article  PubMed  Google Scholar 

  31. Ebm C, Cecconi M, Sutton L, Rhodes A. A cost-effectiveness analysis of postoperative goal-directed therapy for high-risk surgical patients. Crit Care Med. 2014;42(5):1194–203. https://doi.org/10.1097/CCM.0000000000000164.

    Article  PubMed  Google Scholar 

  32. Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112(6):1392–402. https://doi.org/10.1213/ANE.0b013e3181eeaae5.

    Article  PubMed  Google Scholar 

  33. Pearse RM, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311(21):2181–90. https://doi.org/10.1001/jama.2014.5305.

    Article  CAS  PubMed  Google Scholar 

  34. Manecke GR, Asemota A, Michard F. Tackling the economic burden of postsurgical complications: would perioperative goal-directed fluid therapy help? Crit Care. 2014;18(5):566. https://doi.org/10.1186/s13054-014-0566-1.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sun Y, Chai F, Pan C, Romeiser JL, Gan TJ. Effect of perioperative goal-directed hemodynamic therapy on postoperative recovery following major abdominal surgery-a systematic review and meta-analysis of randomized controlled trials. Crit Care. 2017;21(1):141. https://doi.org/10.1186/s13054-017-1728-8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cannesson M, et al. Perioperative goal-directed therapy and postoperative outcomes in patients undergoing high-risk abdominal surgery: a historical-prospective, comparative effectiveness study. Crit Care. 2015;19(1):261. https://doi.org/10.1186/s13054-015-0945-2.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Habicher M, et al. Implementation of goal-directed fluid therapy during hip revision arthroplasty: a matched cohort study. Perioper Med. 2016;5 https://doi.org/10.1186/s13741-016-0056-x.

  38. Miller TE, Roche AM, Gan TJ. Poor adoption of hemodynamic optimization during major surgery: are we practicing substandard care? Anesth Analg. 2011;112(6):1274–6. https://doi.org/10.1213/ANE.0b013e318218cc4f.

    Article  PubMed  Google Scholar 

  39. Molliex S, et al. A multicentre observational study on management of general anaesthesia in elderly patients at high-risk of postoperative adverse outcomes. Anaesth Crit Care Pain Med. 2019;38(1):15–23. https://doi.org/10.1016/j.accpm.2018.05.012.

    Article  PubMed  Google Scholar 

  40. Kong E, Nicolaou N, Vizcaychipi MP. Hemodynamic stability of closed-loop anesthesia systems: a systematic review. Minerva Anestesiol. 2020;86(1):76–87. https://doi.org/10.23736/S0375-9393.19.13927-2.

    Article  PubMed  Google Scholar 

  41. Guen MLE, Liu N, Chazot T, Fischler M. Closed-loop anesthesia. Minerva Anestesiol. 2016;82(5):573–81.

    Google Scholar 

  42. West N, et al. Design and evaluation of a closed-loop anesthesia system with robust control and safety system. Anesth Analg. 2018;127(4):883–94. https://doi.org/10.1213/ANE.0000000000002663.

    Article  PubMed  Google Scholar 

  43. Joosten A, Huynh T, Suehiro K, Canales C, Cannesson M, Rinehart J. Goal-directed fluid therapy with closed-loop assistance during moderate risk surgery using noninvasive cardiac output monitoring: a pilot study. Br J Anaesth. 2015;114(6):886–92. https://doi.org/10.1093/bja/aev002.

    Article  CAS  PubMed  Google Scholar 

  44. Joosten A, et al. Crystalloid versus colloid for intraoperative goal-directed fluid therapy using a closed-loop system: a randomized, double-blinded, controlled trial in major abdominal surgery. Anesthesiology. 2018;128(1):55–66. https://doi.org/10.1097/ALN.0000000000001936.

    Article  CAS  PubMed  Google Scholar 

  45. Rinehart J, et al. Closed-loop assisted versus manual goal-directed fluid therapy during high-risk abdominal surgery: a case–control study with propensity matching. Crit Care. 2015;19(1) https://doi.org/10.1186/s13054-015-0827-7.

  46. Liu N, et al. Feasibility of closed-loop titration of propofol and remifentanil guided by the spectral M-entropy monitor. Anesthesiology. 2012;116(2):286–95. https://doi.org/10.1097/ALN.0b013e318242ad4f.

    Article  CAS  PubMed  Google Scholar 

  47. Luginbühl M, Bieniok C, Leibundgut D, Wymann R, Gentilini A, Schnider TW. Closed-loop control of mean arterial blood pressure during surgery with alfentanil: clinical evaluation of a novel model-based predictive controller. Anesthesiology. 2006;105(3):462–70. https://doi.org/10.1097/00000542-200609000-00008.

    Article  PubMed  Google Scholar 

  48. Joosten A, et al. Fully automated anesthesia and fluid management using multiple physiologic closed-loop systems in a patient undergoing high-risk surgery. Case Rep. 2016;7(12):260–5. https://doi.org/10.1213/XAA.0000000000000405.

    Article  Google Scholar 

  49. Libert N, et al. Performance of closed-loop resuscitation of haemorrhagic shock with fluid alone or in combination with norepinephrine: an experimental study. Ann Intensive Care. 2018;8 https://doi.org/10.1186/s13613-018-0436-0.

  50. Bowman RJ, Westenskow DR. A microcomputer-based fluid infusion system for the resuscitation of burn patients. IEEE Trans Biomed Eng. 1981;28(6):475–9. https://doi.org/10.1109/TBME.1981.324822.

    Article  CAS  PubMed  Google Scholar 

  51. DeBey RK, Westenskow DR, Jordan WS, McJames SW. A urine based control system for fluid infusion. Biomed Sci Instrum. 1987;23:195–8.

    CAS  PubMed  Google Scholar 

  52. Blankenship HB, Wallace FD, Pacifico AD. Clinical application of closed-loop postoperative autotransfusion. Med Prog Technol. 1990;16(1–2):89–93.

    CAS  PubMed  Google Scholar 

  53. Hoskins SL, et al. Closed-loop resuscitation of burn shock. J Burn Care Res. 2006;27(3):377–85. https://doi.org/10.1097/01.BCR.0000216512.30415.78.

    Article  PubMed  Google Scholar 

  54. Chaisson NF, Kirschner RA, Deyo DJ, Lopez JA, Prough DS, Kramer GC. Near-infrared spectroscopy-guided closed-loop resuscitation of hemorrhage. J Trauma. 2003;54(5 Suppl):S183–92. https://doi.org/10.1097/01.TA.0000064508.11512.28.

    Article  PubMed  Google Scholar 

  55. Rinehart J, et al. Evaluation of a novel closed-loop fluid-administration system based on dynamic predictors of fluid responsiveness: an in silico simulation study. Crit Care. 2011;15(6):R278. https://doi.org/10.1186/cc10562.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rinehart J, Chung E, Canales C, Cannesson M. Intraoperative stroke volume optimization using stroke volume, arterial pressure, and heart rate: closed-loop (learning intravenous resuscitator) versus anesthesiologists. J Cardiothorac Vasc Anesth. 2012;26(5):933–9. https://doi.org/10.1053/j.jvca.2012.05.015.

    Article  PubMed  Google Scholar 

  57. Cannesson M. Arterial pressure variation and goal-directed fluid therapy. J Cardiothorac Vasc Anesth. 2010;24(3):487–97. https://doi.org/10.1053/j.jvca.2009.10.008.

    Article  PubMed  Google Scholar 

  58. Rinehart J, Liu N, Alexander B, Cannesson M. Review article: closed-loop systems in anesthesia: is there a potential for closed-loop fluid management and hemodynamic optimization? Anesth Analg. 2012;114(1):130–43. https://doi.org/10.1213/ANE.0b013e318230e9e0.

    Article  PubMed  Google Scholar 

  59. Ramsingh DS, Sanghvi C, Gamboa J, Cannesson M, Applegate RL. Outcome impact of goal directed fluid therapy during high risk abdominal surgery in low to moderate risk patients: a randomized controlled trial. J Clin Monit Comput. 2013;27(3):249–57. https://doi.org/10.1007/s10877-012-9422-5.

    Article  PubMed  Google Scholar 

  60. Ripollés-Melchor J, et al. Perioperative goal-directed hemodynamic therapy in noncardiac surgery: a systematic review and meta-analysis. J Clin Anesth. 2016;28:105–15. https://doi.org/10.1016/j.jclinane.2015.08.004.

    Article  PubMed  Google Scholar 

  61. Rollins KE, Lobo DN. Intraoperative goal-directed fluid therapy in elective major abdominal surgery: a meta-analysis of randomized controlled trials. Ann Surg. 2016;263(3):465–76. https://doi.org/10.1097/SLA.0000000000001366.

    Article  PubMed  Google Scholar 

  62. Joosten A, et al. Implementation of closed-loop-assisted intra-operative goal-directed fluid therapy during major abdominal surgery: a case-control study with propensity matching. Eur J Anaesthesiol. 2018;35(9):650–8. https://doi.org/10.1097/EJA.0000000000000827.

    Article  PubMed  Google Scholar 

  63. Joosten A, et al. Practical impact of a decision support for goal-directed fluid therapy on protocol adherence: a clinical implementation study in patients undergoing major abdominal surgery. J Clin Monit Comput. 2019;33(1):15–24. https://doi.org/10.1007/s10877-018-0156-x.

    Article  PubMed  Google Scholar 

  64. Gholami B, Haddad WM, Bailey JM, Geist B, Ueyama Y, Muir WW. A pilot study evaluating adaptive closed-loop fluid resuscitation during states of absolute and relative hypovolemia in dogs. J Vet Emerg Crit Care San Antonio. 2018:436–46.

    Google Scholar 

  65. Jin X, Bighamian R, Hahn J-O. Development and in silico evaluation of a model-based closed-loop fluid resuscitation control algorithm. IEEE Trans Biomed Eng. 2018; https://doi.org/10.1109/TBME.2018.2880927.

  66. Lilot M, et al. Comparison of cardiac output optimization with an automated closed-loop goal-directed fluid therapy versus non standardized manual fluid administration during elective abdominal surgery: first prospective randomized controlled trial. J Clin Monit Comput. 2018;32(6):993–1003. https://doi.org/10.1007/s10877-018-0106-7.

    Article  PubMed  Google Scholar 

  67. Joosten A, et al. Feasibility of fully automated hypnosis, analgesia, and fluid management using 2 independent closed-loop systems during major vascular surgery: a pilot study. Anesth Analg. 2019;128(6):e88–92. https://doi.org/10.1213/ANE.0000000000003433.

    Article  CAS  PubMed  Google Scholar 

  68. Joosten A, et al. Long-term impact of crystalloid versus colloid solutions on renal function and disability-free survival after major abdominal surgery. Anesthesiology. 2019;130(2):227–36. https://doi.org/10.1097/ALN.0000000000002501.

    Article  CAS  PubMed  Google Scholar 

  69. Rinehart J, et al. Blood pressure variability in surgical and intensive care patients: is there a potential for closed-loop vasopressor administration? Anaesth Crit Care Pain Med. 2019;38(1):69–71. https://doi.org/10.1016/j.accpm.2018.11.009.

    Article  PubMed  Google Scholar 

  70. Joosten A, Rinehart J. Part of the steamroller and not part of the road: better blood pressure management through automation. Anesth Analg. 2017;125(1):20–2. https://doi.org/10.1213/ANE.0000000000002201.

    Article  PubMed  Google Scholar 

  71. Michard F, Liu N, Kurz A. The future of intraoperative blood pressure management. J Clin Monit Comput. 2018;32(1):1–4. https://doi.org/10.1007/s10877-017-9989-y.

    Article  PubMed  Google Scholar 

  72. Mason DG, Packer JS, Cade JF, McDonald RD. Closed-loop management of blood pressure in critically ill patients. Australas Phys Eng Sci Med. 1985;8(4):164–7.

    CAS  PubMed  Google Scholar 

  73. Packer JS, Mason DG, Cade JF, McKinley SM. An adaptive controller for closed-loop management of blood pressure in seriously ill patients. IEEE Trans Biomed Eng. 1987;34(8):612–6. https://doi.org/10.1109/tbme.1987.326072.

    Article  CAS  PubMed  Google Scholar 

  74. Potter DR, Moyle JT, Lester RJ, Ware RJ. Closed loop control of vasoactive drug infusion. A preliminary report. Anaesthesia. 1984;39(7):670–7. https://doi.org/10.1111/j.1365-2044.1984.tb06476.x.

    Article  CAS  PubMed  Google Scholar 

  75. Joosten A, et al. Automated titration of vasopressor infusion using a closed-loop controller: in vivo feasibility study using a swine model. Anesthesiology. 2019;130(3):394–403. https://doi.org/10.1097/ALN.0000000000002581.

    Article  CAS  PubMed  Google Scholar 

  76. Rinehart J, Ma M, Calderon M-D, Cannesson M. Feasibility of automated titration of vasopressor infusions using a novel closed-loop controller. J Clin Monit Comput. 2018;32(1):5–11. https://doi.org/10.1007/s10877-017-9981-6.

    Article  PubMed  Google Scholar 

  77. Rinehart J, Joosten A, Ma M, Calderon M-D, Cannesson M. Closed-loop vasopressor control: in-silico study of robustness against pharmacodynamic variability. J Clin Monit Comput. 2019;33(5):795–802. https://doi.org/10.1007/s10877-018-0234-0.

    Article  PubMed  Google Scholar 

  78. Ngan Kee WD, Tam YH, Khaw KS, Ng FF, Critchley LA, Karmakar MK. Closed-loop feedback computer-controlled infusion of phenylephrine for maintaining blood pressure during spinal anaesthesia for caesarean section: a preliminary descriptive study. Anaesthesia. 2007;62(12):1251–6. https://doi.org/10.1111/j.1365-2044.2007.05257.x.

    Article  CAS  PubMed  Google Scholar 

  79. Ngan Kee WD, Khaw KS, Tam Y-H, Ng FF, Lee SW. Performance of a closed-loop feedback computer-controlled infusion system for maintaining blood pressure during spinal anaesthesia for caesarean section: a randomized controlled comparison of norepinephrine versus phenylephrine. J Clin Monit Comput. 2017;31(3):617–23. https://doi.org/10.1007/s10877-016-9883-z.

    Article  PubMed  Google Scholar 

  80. Ngan Kee WD, Tam Y-H, Khaw KS, Ng FF, Lee SWY. Closed-loop feedback computer-controlled phenylephrine for maintenance of blood pressure during spinal anesthesia for cesarean delivery: a randomized trial comparing automated boluses versus infusion. Anesth Analg. 2017;125(1):117–23. https://doi.org/10.1213/ANE.0000000000001974.

    Article  CAS  PubMed  Google Scholar 

  81. Merouani M, et al. Norepinephrine weaning in septic shock patients by closed loop control based on fuzzy logic. Crit Care. 2008;12(6):R155. https://doi.org/10.1186/cc7149.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Joosten A, et al. Automated closed-loop versus manually controlled norepinephrine infusion in patients undergoing intermediate- to high-risk abdominal surgery: a randomised controlled trial. Br J Anaesth. 2020; https://doi.org/10.1016/j.bja.2020.08.051.

  83. Tjong FVY, Reddy VY. Permanent leadless cardiac pacemaker therapy: a comprehensive review. Circulation. 135(15):1458–70. https://doi.org/10.1161/CIRCULATIONAHA.116.025037.

  84. Sarabadani Tafreshi A, Klamroth-Marganska V, Nussbaumer S, Riener R. Real-time closed-loop control of human heart rate and blood pressure. IEEE Trans Biomed Eng. 2015;62(5):1434–42. https://doi.org/10.1109/TBME.2015.2391234.

    Article  PubMed  Google Scholar 

  85. Osswald S, et al. Closed-loop stimulation using intracardiac impedance as a sensor principle: correlation of right ventricular dP/dtmax and intracardiac impedance during dobutamine stress test. Pacing Clin Electrophysiol PACE. 2000;23(10 Pt 1):1502–8. https://doi.org/10.1046/j.1460-9592.2000.01502.x.

    Article  CAS  PubMed  Google Scholar 

  86. Uemura K, Kawada T, Zheng C, Sugimachi M. Less invasive and inotrope-reduction approach to automated closed-loop control of hemodynamics in decompensated heart failure. IEEE Trans Biomed Eng. 2016;63(8):1699–708. https://doi.org/10.1109/TBME.2015.2499782.

    Article  PubMed  Google Scholar 

  87. Hammond JJ, Kirkendall WM, Calfee RV. Hypertensive crisis managed by computer controlled infusion of sodium nitroprusside: a model for the closed loop administration of short acting vasoactive agents. Comput Biomed Res Int J. 1979;12(2):97–108. https://doi.org/10.1016/0010-4809(79)90008-9.

    Article  CAS  Google Scholar 

  88. Mackenzie AF, Colvin JR, Kenny GN, Bisset WI. Closed loop control of arterial hypertension following intracranial surgery using sodium nitroprusside. A comparison of intra-operative halothane or isoflurane. Anaesthesia. 1993;48(3):202–4. https://doi.org/10.1111/j.1365-2044.1993.tb06901.x.

    Article  CAS  PubMed  Google Scholar 

  89. Bednarski P, Siclari F, Voigt A, Demertzis S, Lau G. Use of a computerized closed-loop sodium nitroprusside titration system for antihypertensive treatment after open heart surgery. Crit Care Med. 1990;18(10):1061–5. https://doi.org/10.1097/00003246-199010000-00002.

    Article  CAS  PubMed  Google Scholar 

  90. Pinsky MR. Complexity modeling: identify instability early. Crit Care Med. 2010;38(10 Suppl):S649–55. https://doi.org/10.1097/CCM.0b013e3181f24484.

    Article  PubMed  Google Scholar 

  91. Hravnak M, et al. Artifact patterns in continuous noninvasive monitoring of patients. Intensive Care Med. 2013;39(Suppl 2):S405.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Pinsky MR, Dubrawski A. Gleaning knowledge from data in the intensive care unit. Am J Respir Crit Care Med. 2014;190(6):606–10. https://doi.org/10.1164/rccm.201404-0716CP.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hatib F, et al. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology. 2018;129(4):663–74. https://doi.org/10.1097/ALN.0000000000002300.

    Article  PubMed  Google Scholar 

  94. Ranucci M, Barile L, Ambrogi F, Pistuddi V, Surgical and Clinical Outcome Research (SCORE) Group. Discrimination and calibration properties of the hypotension probability indicator during cardiac and vascular surgery. Minerva Anestesiol. 2019;85(7):724–30. https://doi.org/10.23736/S0375-9393.18.12620-4.

    Article  PubMed  Google Scholar 

  95. Davies SJ, Vistisen ST, Jian Z, Hatib F, Scheeren TWL. Ability of an arterial waveform analysis-derived hypotension prediction index to predict future hypotensive events in surgical patients. Anesth Analg. 2020;130(2):352–9. https://doi.org/10.1213/ANE.0000000000004121.

    Article  PubMed  Google Scholar 

  96. Schneck E, et al. Hypotension prediction index based protocolized haemodynamic management reduces the incidence and duration of intraoperative hypotension in primary total hip arthroplasty: a single centre feasibility randomised blinded prospective interventional trial. J Clin Monit Comput. 2020;34(6):1149–58. https://doi.org/10.1007/s10877-019-00433-6.

    Article  PubMed  Google Scholar 

  97. Wijnberge M, et al. Effect of a machine learning-derived early warning system for intraoperative hypotension vs standard care on depth and duration of intraoperative hypotension during elective noncardiac surgery: the HYPE randomized clinical trial. JAMA. 323(11):1052–60. https://doi.org/10.1001/jama.2020.0592.

  98. Maheshwari K, et al. Hypotension prediction index for prevention of hypotension during moderate- to high-risk noncardiac surgery: a pilot randomized trial. Anesthesiology. 2020;133(6):1214–22. https://doi.org/10.1097/ALN.0000000000003557.

    Article  CAS  PubMed  Google Scholar 

  99. Joosten A, Rinehart J, Cannesson M. Perioperative goal directed therapy: evidence and compliance are two sides of the same coin. Rev Esp Anestesiol Reanim. 2015;62(4):181–3. https://doi.org/10.1016/j.redar.2015.01.012.

    Article  CAS  PubMed  Google Scholar 

  100. Sessler DI, et al. Triple-low alerts do not reduce mortality: a real-time randomized trial. Anesthesiology. 2019;130(1):72–82. https://doi.org/10.1097/ALN.0000000000002480.

    Article  PubMed  Google Scholar 

  101. Zhang L, Fabbri D, Lasko TA, Ehrenfeld JM, Wanderer JP. A system for automated determination of perioperative patient acuity. J Med Syst. 2018;42(7):123. https://doi.org/10.1007/s10916-018-0977-7.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Moustafa MA, El-Metainy S, Mahar K, Abdel-magied EM. Defining difficult laryngoscopy findings by using multiple parameters: a machine learning approach. Egypt J Anaesth. 2017;33(2):153–8. https://doi.org/10.1016/j.egja.2017.02.002.

    Article  Google Scholar 

  103. Hancerliogullari G, Hancerliogullari KO, Koksalmis E. The use of multi-criteria decision making models in evaluating anesthesia method options in circumcision surgery. BMC Med Inform Decis Mak. 2017;17(1):14. https://doi.org/10.1186/s12911-017-0409-5.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lin C-S, Li Y-C, Mok MS, Wu C-C, Chiu H-W, Lin Y-H. Neural network modeling to predict the hypnotic effect of propofol bolus induction. Proc AMIA Symp. 2002:450–3.

    Google Scholar 

  105. Combes C, Meskens N, Rivat C, Vandamme J-P. Using a KDD process to forecast the duration of surgery. Int J Prod Econ. 2008;112(1):279–93. https://doi.org/10.1016/j.ijpe.2006.12.068.

    Article  Google Scholar 

  106. Santanen OAP, Svartling N, Haasio J, Paloheimo MPJ. Neural nets and prediction of the recovery rate from neuromuscular block. Eur J Anaesthesiol. 2003;20(2):87–92. https://doi.org/10.1017/s0265021503000164.

    Article  CAS  PubMed  Google Scholar 

  107. Kumar A, Anjomshoa H. A two-stage model to predict surgical patients’ lengths of stay from an electronic patient database. IEEE J Biomed Health Inform. 2019;23(2):848–56. https://doi.org/10.1109/JBHI.2018.2819646.

    Article  PubMed  Google Scholar 

  108. Lei VJ, et al. Risk stratification for postoperative acute kidney injury in major noncardiac surgery using preoperative and intraoperative data. JAMA Netw Open. 2019;2(12) https://doi.org/10.1001/jamanetworkopen.2019.16921.

  109. Galyfos GC, Geropapas GE, Sianou A, Sigala F, Filis K. Risk factors for postoperative delirium in patients undergoing vascular surgery. J Vasc Surg. 2017;66(3):937–46. https://doi.org/10.1016/j.jvs.2017.03.439.

    Article  PubMed  Google Scholar 

  110. Escobar GJ, Liu VX, Schuler A, Lawson B, Greene JD, Kipnis P. Automated identification of adults at risk for in-hospital clinical deterioration. N Engl J Med. 2020;383(20):1951–60. https://doi.org/10.1056/NEJMsa2001090.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lee CK, Hofer I, Gabel E, Baldi P, Cannesson M. Development and validation of a deep neural network model for prediction of postoperative in-hospital mortality. Anesthesiology. 2018;129(4):649–62. https://doi.org/10.1097/ALN.0000000000002186.

    Article  PubMed  Google Scholar 

  112. Wong DJN, et al. Developing and validating subjective and objective risk-assessment measures for predicting mortality after major surgery: an international prospective cohort study. PLoS Med. 2020;17(10):e1003253. https://doi.org/10.1371/journal.pmed.1003253.

    Article  PubMed  PubMed Central  Google Scholar 

  113. von Platen P, Pomprapa A, Lachmann B, Leonhardt S. The dawn of physiological closed-loop ventilation – a review. Crit Care. 2020;24(1):121. https://doi.org/10.1186/s13054-020-2810-1.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Schäublin J, Derighetti M, Feigenwinter P, Petersen-Felix S, Zbinden AM. Fuzzy logic control of mechanical ventilation during anaesthesia. Br J Anaesth. 1996;77(5):636–41. https://doi.org/10.1093/bja/77.5.636.

    Article  PubMed  Google Scholar 

  115. N. Prasad, L.-F. Cheng, C. Chivers, M. Draugelis, and B. E. Engelhardt (2017) A reinforcement learning approach to weaning of mechanical ventilation in intensive care units. ArXiv170406300 Cs [Online]. http://arxiv.org/abs/1704.06300.

  116. Schädler D, et al. A knowledge- and model-based system for automated weaning from mechanical ventilation: technical description and first clinical application. J Clin Monit Comput. 2014;28(5):487–98. https://doi.org/10.1007/s10877-013-9489-7.

    Article  PubMed  Google Scholar 

  117. Mackey S, Greely HT, Martucci KT. Neuroimaging-based pain biomarkers: definitions, clinical and research applications, and evaluation frameworks to achieve personalized pain medicine. Pain Rep. 2019;4(4) https://doi.org/10.1097/PR9.0000000000000762.

  118. Gram M, et al. Prediction of postoperative opioid analgesia using clinical-experimental parameters and electroencephalography. Eur J Pain. 2017;21(2):264–77. https://doi.org/10.1002/ejp.921.

    Article  CAS  PubMed  Google Scholar 

  119. Hu Y-J, Ku T-H, Jan R-H, Wang K, Tseng Y-C, Yang S-F. Decision tree-based learning to predict patient controlled analgesia consumption and readjustment. BMC Med Inform Decis Mak. 2012;12:131. https://doi.org/10.1186/1472-6947-12-131.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Olesen AE, Grønlund D, Gram M, Skorpen F, Drewes AM, Klepstad P. Prediction of opioid dose in cancer pain patients using genetic profiling: not yet an option with support vector machine learning. BMC Res Notes. 2018;11(1):78. https://doi.org/10.1186/s13104-018-3194-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44. https://doi.org/10.1038/s41591-018-0300-7.

    Article  CAS  PubMed  Google Scholar 

  122. Smistad E, Løvstakken L. Vessel detection in ultrasound images using deep convolutional neural networks. In: Deep learning and data labeling for medical applications. Cham: Springer; 2016. p. 30–8. https://doi.org/10.1007/978-3-319-46976-8_4.

    Chapter  Google Scholar 

  123. Hetherington J, Lessoway V, Gunka V, Abolmaesumi P, Rohling R. SLIDE: automatic spine level identification system using a deep convolutional neural network. Int J Comput Assist Radiol Surg. 2017;12(7):1189–98. https://doi.org/10.1007/s11548-017-1575-8.

    Article  PubMed  Google Scholar 

  124. Pesteie M, Lessoway V, Abolmaesumi P, Rohling RN. Automatic localization of the needle target for ultrasound-guided epidural injections. IEEE Trans Med Imaging. 2018;37(1):81–92. https://doi.org/10.1109/TMI.2017.2739110.

    Article  PubMed  Google Scholar 

  125. Komorowski M. Artificial intelligence in intensive care: are we there yet? Intensive Care Med. 2019;45(9):1298–300. https://doi.org/10.1007/s00134-019-05662-6.

    Article  PubMed  Google Scholar 

  126. Komorowski M. Clinical management of sepsis can be improved by artificial intelligence: yes. Intensive Care Med. 2020;46(2):375–7. https://doi.org/10.1007/s00134-019-05898-2.

    Article  PubMed  Google Scholar 

  127. Futoma J, Simons M, Panch T, Doshi-Velez F, Celi LA. The myth of generalisability in clinical research and machine learning in health care. Lancet Digit Health. 2020;2(9):e489–92. https://doi.org/10.1016/S2589-7500(20)30186-2.

    Article  PubMed  PubMed Central  Google Scholar 

  128. McDermid JA, Jia Y, Habli I. Towards a framework for safety assurance of autonomous systems. Artif Intell Safety. 2019;11:2019. http://eprints.whiterose.ac.uk/150187/. Accessed 18 Nov 2020

    Google Scholar 

  129. Komorowski M, Celi LA. Will artificial intelligence contribute to overuse in healthcare? Crit Care Med. 2017;45(5):912–3. https://doi.org/10.1097/CCM.0000000000002351.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Gambus P, Shafer SL. Artificial intelligence for everyone. Anesthesiology. 2018;128(3):431–3. https://doi.org/10.1097/ALN.0000000000001984.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Komorowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Komorowski, M., Joosten, A. (2022). AIM in Anesthesiology. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-64573-1_246

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64573-1_246

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64572-4

  • Online ISBN: 978-3-030-64573-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics