Skip to main content

Targeted Breeding in Cotton Using CRISPR/Cas9 Genome Editing

  • Chapter
  • First Online:
Cotton Precision Breeding

Abstract

Traditional breeding has made significant progress toward improving cotton adaptation in prevailing environments for increased yield and quality. The conventional breeding systems are handicapped owing to lengthy breeding process, random insertion of genes, and phenotype-based selections which are often misleading. Recently developed CRISPR/Cas9 genome editing technology opens a new era for acquiring precision cotton breeding. CRISPR/Cas9 is a naturally occurred genome editing tool adopted from prokaryotic adoptive immune defense system. Due to its simplicity and robustness, CRISPR/Cas9 has been quickly adopted to use in multiple fields, including gene function study and precise breeding. Since it was adopted in cotton for the first time in 2017, in which Li and colleagues edited an endogenous functional gene MYB-15 like in cotton, CRISPR/Cas9 has been quickly adopted by several cotton research laboratories and biotechnological industries worldwide. Currently, CRISPR/Cas9 has been widely used to study gene function and cotton improvement, including fiber development, resistance to abiotic and biotic stress, modification of cotton morphology, and secondary metabolism. In the next decade, CRISPR/Cas9-based precise breeding will significantly enhance cotton breeding and production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38(7):824–844

    Article  CAS  PubMed  Google Scholar 

  • Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8:1932

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnhoorn I, van Dyk C (2020) The first report of selected herbicides and fungicides in water and fish from a highly utilized and polluted freshwater urban impoundment. Environ Sci Pollut Res Int 27:33393–33398

    Article  CAS  PubMed  Google Scholar 

  • Chen KL, Wang YP, Zhang R, Zhang HW, Gao CX (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. In: Merchant SS (ed) Annual review of plant biology, vol 70, pp 667–697

    Google Scholar 

  • Deng J, Yang X, Sun W, Miao Y, He L, Zhang X (2020) The calcium sensor CBL2 and its interacting kinase CIPK6 are involved in plant sugar homeostasis via interacting with tonoplast sugar transporter TST2(1). Plant Physiol 183:236–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1077

    Article  CAS  Google Scholar 

  • Du XM, Huang G, He SP, Yang ZE, Sun GF, Ma XF, Li N, Zhang XY, Sun JL, Liu M, Jia YH, Pan ZE, Gong WF, Liu ZH, Zhu HQ, Ma L, Liu FY, Yang DG, Wang F, Fan W, Gong Q, Peng Z, Wang LR, Wang XY, Xu SJ, Shang HH, Lu CR, Zheng HK, Huang SW, Lin T, Zhu YX, Li FG (2018) Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat Genet 50:796

    Article  CAS  PubMed  Google Scholar 

  • Fang DD, Naoumkina M, Kim HJ (2018) Unraveling cotton fiber development using fiber mutants in the post-genomic era. Crop Sci 58:2214–2228

    Article  Google Scholar 

  • Gao W, Xu F-C, Long L, Li Y, Zhang J-L, Chong L, Botella JR, Song C-P (2020) The gland localized CGP1 controls gland pigmentation and gossypol accumulation in cotton. Plant Biotechnol J 18:1573–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109:E2579–E2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan XY, Song QX, Chen ZJ (2014) Polyploidy and small RNA regulation of cotton fiber development. Trends Plant Sci 19:516–528

    Article  CAS  PubMed  Google Scholar 

  • He X, Luo X, Wang T, Liu S, Zhang X, Zhu L (2020) GhHB12 negatively regulates abiotic stress tolerance in Arabidopsis and cotton. Environ Exp Bot 176:104087

    Article  CAS  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Chen JD, Fang L, Zhang ZY, Ma W, Niu YC, Ju LZ, Deng JQ, Zhao T, Lian JM, Baruch K, Fang D, Liu X, Ruan YL, Rahman MU, Han JL, Wang K, Wang Q, Wu HT, Mei GF, Zang YH, Han ZG, Xu CY, Shen WJ, Yang DF, Si ZF, Dai F, Zou LF, Huang F, Bai YL, Zhang YG, Brodt A, Ben-Hamo H, Zhu XF, Zhou BL, Guan XY, Zhu SJ, Chen XY, Zhang TZ (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51:739

    Article  CAS  PubMed  Google Scholar 

  • Ijaz B, Zhao N, Kong J, Hua JP (2019) Fiber quality improvement in upland cotton (Gossypium hirsutum L.): quantitative trait loci mapping and marker assisted selection application. Front Plant Sci 10:1585

    Article  PubMed  PubMed Central  Google Scholar 

  • Janga MR, Campbell LM, Rathore KS (2017) CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.). Plant Mol Biol 94:349–360

    Article  CAS  PubMed  Google Scholar 

  • Janga MR, Pandeya D, Campbell LM, Konganti K, Villafuerte ST, Puckhaber L, Pepper A, Stipanovic RD, Scheffler JA, Rathore KS (2019) Genes regulating gland development in the cotton plant. Plant Biotechnol J 17:1142–1153

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial i9mmunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juturu VN, Mekala GK, Kirti PB (2015) Current status of tissue culture and genetic transformation research in cotton (Gossypium spp.). Plant Cell Tissue Org Cult 120:813–839

    Article  CAS  Google Scholar 

  • Langner T, Kamoun S, Belhaj K (2018) CRISPR crops: plant genome editing toward disease resistance. In: Leach JE, Lindow SE (eds) Annual review of phytopathology, vol 56, pp 479–512

    Google Scholar 

  • Li F, Fan G, Wang K (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 46: 567–572

    Google Scholar 

  • Li C, Zhang BH (2016) MicroRNAs in control of plant development. J Cell Physiol 231:303–313

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhang B (2019) Genome editing in cotton using CRISPR/Cas9 system. Methods Mol Biol (Clifton, NJ) 1902:95–104

    Google Scholar 

  • Li FG, Fan GY, Lu CR, Xiao GH, Zou CS, Kohel RJ, Ma ZY, Shang HH, Ma XF, Wu JY, Liang XM, Huang G, Percy RG, Liu K, Yang WH, Chen WB, Du XM, Shi CC, Yuan YL, Ye WW, Liu X, Zhang XY, Liu WQ, Wei HL, Wei SJ, Huang GD, Zhang XL, Zhu SJ, Zhang H, Sun FM, Wang XF, Liang J, Wang JH, He Q, Huang LH, Wang J, Cui JJ, Song GL, Wang KB, Xu X, Yu JZ, Zhu YX, Yu SX (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–U242

    Google Scholar 

  • Li C, Unver T, Zhang B (2017) A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.). Sci Rep 7:43902

    Article  PubMed  PubMed Central  Google Scholar 

  • Long L, Guo D-D, Gao W, Yang W-W, Hou L-P, Ma X-N, Miao Y-C, Botella JR, Song C-P (2018) Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods 14

    Google Scholar 

  • Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    Article  CAS  PubMed  Google Scholar 

  • Meng ZG, Meng ZH, Zhang R, Liang CZ, Wan JM, Wang YL, Zhai HH, Guo SD (2015) Expression of the rice arginase gene OsARG in cotton influences the morphology and nitrogen transition of seedlings. PLoS One 10:e0141530

    Article  PubMed  PubMed Central  Google Scholar 

  • Naoumkina M, Thyssen GN, Fang DD, Hinchliffe DJ, Florane CB, Jenkins JN (2016) Small RNA sequencing and degradome analysis of developing fibers of short fiber mutants Ligon-lintles-1 (Li-1) and-2 (Li-2) revealed a role for miRNAs and their targets in cotton fiber elongation. BMC Genomics 17:360

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng RH, Jones DC, Liu F, Zhang (2021) From sequencing to genome editing for cotton improvement. Trends in Biotechnology, https://doi.org/10.1016/j.tibtech.2020.09.001

  • Peters K, Bundschuh M, Schäfer RB (2013) Review on the effects of toxicants on freshwater ecosystem functions. Environ Pollut (Barking, Essex: 1987) 180:324–329

    Article  CAS  Google Scholar 

  • Qin L, Li J, Wang Q, Xu Z, Sun L, Alariqi M, Manghwar H, Wang G, Li B, Ding X, Rui H, Huang H, Lu T, Lindsey K, Daniell H, Zhang X, Jin S (2020) High-efficient and precise base editing of C center dot G to T center dot A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnol J 18:45–56

    Article  CAS  PubMed  Google Scholar 

  • Sentmanat MF, Peters ST, Florian CP, Connelly JP, Pruett-Miller SM (2018) A survey of validation strategies for CRISPR-Cas9 editing. Sci Rep 8:888

    Article  PubMed  PubMed Central  Google Scholar 

  • Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, Severinov K, Zhang F, Koonin EV (2017) Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 15:169–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun GL, Xie FL, Zhang BH (2011) Transcriptome-wide identification and stress properties of the 14-3-3 gene family in cotton (Gossypium hirsutum L.). Funct Integr Genomics 11:627–636

    Article  CAS  PubMed  Google Scholar 

  • Terzaghi E, Vitale CM, Di Guardo A (2020) Modelling peak exposure of pesticides in terrestrial and aquatic ecosystems: importance of dissolved organic carbon and vertical particle movement in soil. SAR QSAR Environ Res 31:19–32

    Article  CAS  PubMed  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  • Walford SA, Wu YR, Llewellyn DJ, Dennis ES (2011) GhMYB25-like: a key factor in early cotton fibre development. Plant J 65:785–797

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Wang Z, Li F, Ye W (2012) The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics. 44(10): 1098–1104. https://doi.org/10.1038/ng.2371

  • Wang QL, Zhang BH (2015) MicroRNAs in cotton: an open world needs more exploration. Planta 241:1303–1312

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Meng Z, Liang C, Meng Z, Wang Y, Sun G, Zhu T, Cai Y, Guo S, Zhang R, Lin Y (2017) Increased lateral root formation by CRISPR/Cas9-mediated editing of arginase genes in cotton. Sci China Life Sci 60:524–527

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Zhang J, Sun L, Ma Y, Xu J, Liang S, Deng J, Tan J, Zhang Q, Tu L, Daniell H, Jin S, Zhang X (2018) High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J 16:137–150

    Article  CAS  PubMed  Google Scholar 

  • Wang MJ, Tu LL, Yuan DJ, Zhu D, Shen C, Li JY, Liu FY, Pei LL, Wang PC, Zhao GN, Ye ZX, Huang H, Yan FL, Ma YZ, Zhang L, Liu M, You JQ, Yang YC, Liu ZP, Huang F, Li BQ, Qiu P, Zhang QH, Zhu LF, Jin SX, Yang XY, Min L, Li GL, Chen LL, Zheng HK, Lindsey K, Lin ZX, Udall JA, Zhang XL (2019) Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 51:224

    Article  CAS  PubMed  Google Scholar 

  • Wright DA, Li T, Yang B, Spalding MH (2014) TALEN-mediated genome editing: prospects and perspectives. Biochem J 462:15–24

    Google Scholar 

  • Wu ZG, Yang Y, Huang G, Lin J, Xia YY, Zhu YX (2017) Cotton functional genomics reveals global insight into genome evolution and fiber development. J Genet Genomics 44:511–518

    Article  PubMed  Google Scholar 

  • Xie FL, Wang QL, Sun RR, Zhang BH (2015a) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot 66:789–804

    Article  CAS  PubMed  Google Scholar 

  • Xie FL, Wang QL, Zhang BH (2015b) Global microRNA modification in cotton (Gossypium hirsutum L.). Plant Biotechnol J 13:492–500

    Article  CAS  PubMed  Google Scholar 

  • Yang ZR, Qanmber G, Wang Z, Yang ZE, Li FG (2020) Gossypium genomics: trends, scope, and utilization for cotton improvement. Trends Plant Sci 25:488–500

    Article  CAS  PubMed  Google Scholar 

  • Zaidi S, Mukhtar MS, Mansoor S (2018) Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol 36:898–906

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66:1749–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B (2019a) Agrobacterium-mediated genetic transformation of cotton. Methods Mol Biol 1902:19–33

    Article  CAS  PubMed  Google Scholar 

  • Zhang B (2019b) Transgenic cotton: from biotransformation methods to agricultural application. Methods Mol Biol 1902:3–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH (2019c) CRISPR/Cas-based genome editing: a new era for transgenic and precise breeding in cotton. ICAC Recorder 37:3–10

    Google Scholar 

  • Zhang BH (2019d) Transgenic cotton. Humana Press, New York

    Book  Google Scholar 

  • Zhang D, Zhang B (2020) SpRY: engineered CRISPR/Cas9 harnesses new genome-editing power. Trends in Genetics, 36(8):546–548. https://doi.org/10.1016/j.tig.2020.05.001

  • Zhang BH, Pan XP, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Venne L, Dunnum S, McMurry ST, Cobb GP, Anderson TA (2008) Development of a method for the determination of 9 currently used cotton pesticides by gas chromatography with electron capture detection. Talanta 75:1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH, Wang QL, Liu F, Wang KB, Frazier TP (2009) Highly efficient plant regeneration through somatic embryogenesis in 20 elite commercial cotton (Gossypium hirsutum L.) cultivars. Plant Omics 2:259–268

    CAS  Google Scholar 

  • Zhang ZT, Zhou Y, Li Y, Shao SQ, Li BY, Shi HY, Li XB (2010) Interactome analysis of the six cotton 14-3-3s that are preferentially expressed in fibres and involved in cell elongation. J Exp Bot 61:3331–3344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang TZ, Hu Y, Jiang WK, Fang L, Guan XY, Chen JD, Zhang JB, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu BL, Liu CX, Wang S, Pan MQ, Wang YK, Wang DW, Ye WX, Chang LJ, Zhang WP, Song QX, Kirkbride RC, Chen XY, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu XY, Zhang H, Wu HT, Zhou L, Mei GF, Chen SQ, Tian Y, Xiang D, Li XH, Ding J, Zuo QY, Tao LN, Liu YC, Li J, Lin Y, Hui YY, Cao ZS, Cai CP, Zhu XF, Jiang Z, Zhou BL, Guo WZ, Li RQ, Chen ZJ (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–U252

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Ge X, Luo X, Wang P, Fan Q, Hu G, Xiao J, Li F, Wu J (2018) Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton. Front Plant Sci 9:842

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou ML, Sun GQ, Sun ZM, Tang YX, Wu YM (2014) Cotton proteomics for deciphering the mechanism of environment stress response and fiber development. J Proteome 105:74–84

    Article  CAS  Google Scholar 

  • Zhou Y, Zhang ZT, Li M, Wei XZ, Li XJ, Li BY, Li XB (2015) Cotton (Gossypium hirsutum) 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling. Plant Biotechnol J 13:269–280

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Yu X, Li Y, Sun Y, Zhu Q, Sun J (2018) Highly efficient targeted gene editing in upland cotton using the CRISPR/Cas9 system. Int J Mol Sci 19:3000

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

The CRISPR/Cas9-related research, including establishment of the CRISPR/Cas9 genome system in cotton, in B.Z. lab is supported in part by Cotton Incorporated and the National Science Foundation (award 1658709).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, B., Rahman, Mu. (2021). Targeted Breeding in Cotton Using CRISPR/Cas9 Genome Editing. In: Rahman, Mu., Zafar, Y., Zhang, T. (eds) Cotton Precision Breeding. Springer, Cham. https://doi.org/10.1007/978-3-030-64504-5_14

Download citation

Publish with us

Policies and ethics