Skip to main content

Voltage Source Converter Control Under Unbalanced Grid Voltage

  • Chapter
  • First Online:
Control and Operation of Grid-Connected Wind Energy Systems

Part of the book series: Green Energy and Technology ((GREEN))

  • 471 Accesses

Abstract

The conventional control of the voltage source converter (VSC) assumes that the input voltage is balanced. However, unbalanced voltage is a phenomenon that occurs frequently in actual industrial sites. If the grid voltage is unbalanced, THD increases due to voltage negative component, and low harmonic components appear in DC-link voltage, which adversely affects the performance of the converter. Therefore, the purpose of this study is to propose an efficient control method that can solve the problem of the AC-DC converter due to the unbalance of grid voltage. A Multivariable State-Feedback (MSF) current controller is proposed to improve the performance of the VSC under grid voltage disturbances. The control process is carried out by adjusting the extracted positive and negative components of the grid d and q-axis currents. To minimize the DC-link voltage ripple, the reference negative grid currents are obtained from the DC-link voltage controller. However, if the target is to eliminate the imbalance of the grid current, the reference negative currents are set to zero. The experimental results are discussed to validate the proposed controller. The results show that the new MSF controller reduced the DC-link ripple and provides a fast dynamic response during unbalanced grid voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abo-Khalil AG, Kim HG, Lee DC, Seok JK (2004) Maximum output power control of wind generation system considering loss minimization of machines. Proc IECON’04, pp 1676–1681

    Google Scholar 

  2. Khaled U, Eltamaly AM, Beroual A (2017) Optimal power flow using particle swarm optimization of renewable hybrid distributed generation. Energies 10(7):1013

    Article  Google Scholar 

  3. Qin H, Kimball JW (2014) Closed-loop control of DC-DC dual-active-bridge converters driving single-phase inverters. Power Electron IEEE Trans 29(2):1006–1017

    Article  Google Scholar 

  4. Lin JL, Yao WK, Yang SP (2006) Analysis and design for a novel single-stage high power factor correction diagonal half-bridge forward AC-DC converter. Circ Syst IEEE Trans 53(10):2274–2286

    Article  Google Scholar 

  5. Tsang KM, Chan WL (2005) Adaptive control of power factor correction converter using nonlinear system identification. Power Appl IEEE Proc Electr 152(3):626–633

    Google Scholar 

  6. Pena RS, Cardenas RJ, Clare JC, Asher GM (2001) Control strategies for voltage control of a boost type PWM converter. IEEE 32nd Power Elec. Spec. Conf, PESC'01, vol 2, pp. 730–735

    Google Scholar 

  7. Chang E-C, Liang T-J, Chen J-F, Chang F-J (2008) Real-time implementation of grey fuzzy terminal sliding mode control for PWM DC-AC converters. . IET Power Electron 1:235–244

    Article  Google Scholar 

  8. Cecati C, Dell'Aquila A, Lecci A, Liserre M (2005) Implementation issues of a fuzzy logic-based three-phase active rectifier employing only voltage sensors. IEEE Trans Ind Electron 52:378–385

    Google Scholar 

  9. Allag A, Hammoudi M, Mimoune SM, Ayad MY, Becherif M, Miraoui A (2007) Tracking control via adaptive backstepping approach for a three phase PWM AC-DC converter. IEEE international symposium on industrial electronics, ISIE'07, pp 371–376

    Google Scholar 

  10. Escobar G, Chevreau D, Ortega R, Mendes E (2001) An adaptive passivity-based controller for a unity power factor rectifier. IEEE Trans Control Syst Technol 9:637–644

    Article  Google Scholar 

  11. Harnefors L, Zhang L, Bongiorno M (2008) Frequency-domain passivity-based current controller design. IET Power Electron 1:455–465

    Article  Google Scholar 

  12. Shtessel Y, Baev S, Biglari H (2008) Unity power factor control in three-phase AC/DC boost converter using sliding modes. IEEE Trans Ind Electron 55:3874–3882

    Article  Google Scholar 

  13. Eltamaly AM, Alolah AI, Abdel-Rahman MH (2010) Modified DFIG control strategy for wind energy applications. In: SPEEDAM 2010. IEEE, pp 653–658

    Google Scholar 

  14. Mendalek N, Al-Haddad K, Fnaiech F, Dessaint LA (2003) Nonlinear control technique to enhance dynamic performance of a shunt active power _lter. IEE Proc Electric Power Appl 150:373–379

    Google Scholar 

  15. Lee T-S (2003) Input-output linearization and zero-dynamics control of three-phase AC/DC voltage-source converters. IEEE Trans Power Electron 18:11–22

    Article  Google Scholar 

  16. Burgos RP, Wiechmann EP (2005) Extended voltage swell ride-through capability for PWM voltage-source rectifiers. IEEE Trans Ind Electron 52:1086–1098

    Article  Google Scholar 

  17. Lee T-S, Tzeng K-S (2002) Input-output linearizing control with load estimator for three-phase AC/DC voltage-source converters. In: IEEE 33rd Power Electr. Spec. Conf., PESC'02, vol. 2, pp 791–795

    Google Scholar 

  18. Nikkhajoei H, Iravani R (2007) Dynamic model and control of AC/DC/AC voltage-sourced converter system for distributed resources. IEEE Trans Power Del 22:1169–1178

    Article  Google Scholar 

  19. Savaghebi M, Jalilian A, Vasquez JC (2012) A secondary control level to focus the grid voltage and does not concern the local control objectives of the VSC. IEEE Trans Smart Grid 3(2):797–807

    Google Scholar 

  20. Eltamaly AM, Khan AA (2011) Investigation of DC link capacitor failures in DFIG based wind energy conversion system. Trends Electr Eng 1(1):12–21

    Google Scholar 

  21. Teodorescu R, Blaabjerg FM, Liserre M (2006) Proportional resonant controllers and filters for grid-connected voltage-source converters. IEE Proc-Electr Power Appl 153:750–762

    Google Scholar 

  22. Lascu C, Asiminoaei L, Boldea I, Blaabjerg FM (2007) High performance current controller for selective harmonic compensation in active power filters. IEEE Trans Power Electron 22:1826–1835

    Google Scholar 

  23. Dawei Z, Lie X, Williams BW (2010) Model-based predictive direct power control of doubly fed induction generators. IEEE Trans Power Electron 25:341–351

    Google Scholar 

  24. Cort’es P, Rodriguez J, Antoniewicz P, Kazmierkowski M (2008) Direct power control of an AFE using predictive control. IEEE Trans Power Electron 23:2516–2553

    Google Scholar 

  25. Ab-Khalil AG (2015) Control system of DFIG for Wind Power Generation Systems. LAP LAMBERT Academic Publishing, ISBN-10: 3659649813, ISBN-13: 978–3659649813

    Google Scholar 

  26. Abo-Khalil AG, Abdulbasser M (2016) Multivariable state feedback control of three-phase voltage source-PWM current regulator. Middle-East J Sci Res 24(3):10

    Google Scholar 

  27. Abo-Khalil AG, Ab-Zied H (2012) Sensorless control for DFIG wind turbines based on support vector regression. Industrial electronics conference IECON, Canada

    Google Scholar 

  28. Abokhalil AG (2019) Grid connection control of DFIG for variable speed wind turbines under turbulent conditions. Int J Renew Energy Res (IJRER) 9(3):1260–1271

    Google Scholar 

  29. Abo-Khalil AG, Alghamdi A, Tlili I, Eltamaly A (2019) A current controller design for DFIG-based wind turbines using state feedback control. IET Renew Power Generation 13(11):1938–1949

    Google Scholar 

  30. Abo-Khalil AG, Alghamdi AS, Eltamaly AM, Al-Saud MS, Praveen PR, Sayed K (2019) Design of state feedback current controller for fast synchronization of DFIG in wind power generation systems. Energies 12(12):2427

    Google Scholar 

  31. Abo-Elyousr FK, Youssef A (2018) Optimal PI microcontroller-based realization for technical trends of single-stage single-phase grid-tied PV. Eng Sci Technol Int J 21:945–956

    Google Scholar 

  32. Abdelwahab SAM, Yousef AM, Ebeed M, Abo-Elyousr FK, Elnozahy A, Mohammed M (2020) Optimization of PID controller for hybrid renewable energy system using adaptive sine cosine algorithm. Int J Renew Energy Res 10(2):669–677

    Google Scholar 

  33. Eltamaly AM, Alolah AI, Abdel-Rahman MH (2011) Improved simulation strategy for DFIG in wind energy applications. Int Rev Model Simul 4(2)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali M. Eltamaly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abo-Khalil, A.G., Eltamaly, A.M. (2021). Voltage Source Converter Control Under Unbalanced Grid Voltage. In: Eltamaly, A.M., Abdelaziz, A.Y., Abo-Khalil, A.G. (eds) Control and Operation of Grid-Connected Wind Energy Systems. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-64336-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64336-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64335-5

  • Online ISBN: 978-3-030-64336-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics