Skip to main content

Dynamical State Forcing on Central Pattern Generators for Efficient Robot Locomotion Control

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Abstract

Many CPG-based locomotion models have a problem known as the tracking error problem, where the mismatch between the CPG driving signal and the state of the robot can cause undesirable behaviours for legged robots. Towards alleviating this problem, we introduce a mechanism that modulates the CPG signal using the robot’s interoceptive information. The key concept is to generate a driving signal that is easier for the robot to follow, yet can drive the locomotion of the robot. This can be done by nudging the CPG signal in the direction of lower tracking error, which can be analytically calculated. Unlike other reactive CPG, the proposed method does not rely on any parametric learning ability to adjust the shape of the signal, making it a unique option for a biological adaptive motor control. Our experiment results show that the proposed method successfully reduces the tracking error. We also show that the CPG signal, regulated by the proposed method, is robust to perturbation and can smoothly return back to the default pattern.

T. Chuthong and B. Leung—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    see also https://youtu.be/uMxDPPg1Q9A.

References

  1. Arena, P.: The central pattern generator: a paradigm for artificial locomotion. Soft Comput. 4(4), 251–266 (2000)

    Article  Google Scholar 

  2. Åström, K.J., Hägglund, T., Astrom, K.J.: Advanced PID Control, vol. 461. ISA-The Instrumentation, Systems, and Automation Society, Research Triangle (2006)

    MATH  Google Scholar 

  3. Barikhan, S.S., Wörgötter, F., Manoonpong, P.: Multiple decoupled CPGs with local sensory feedback for adaptive locomotion behaviors of bio-inspired walking robots. In: del Pobil, A.P., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds.) SAB 2014. LNCS (LNAI), vol. 8575, pp. 65–75. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08864-8_7

    Chapter  Google Scholar 

  4. Bem, T., Cabelguen, J.M., Ekeberg, Ö., Grillner, S.: From swimming to walking: a single basic network for two different behaviors. Biol. Cybern. 88(2), 79–90 (2003)

    Article  Google Scholar 

  5. Buchli, J., Ijspeert, A.J.: Distributed central pattern generator model for robotics application based on phase sensitivity analysis. In: Ijspeert, A.J., Murata, M., Wakamiya, N. (eds.) BioADIT 2004. LNCS, vol. 3141, pp. 333–349. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27835-1_25

    Chapter  Google Scholar 

  6. Buchli, J., Righetti, L., Ijspeert, A.J.: Engineering entrainment and adaptation in limit cycle systems. Biol. Cybern. 95(6), 645 (2006)

    Article  Google Scholar 

  7. Crespi, A., Ijspeert, A.J.: AmphiBot II: an amphibious snake robot that crawls and swims using a central pattern generator. In: Proceedings of the 9th International Conference on Climbing and Walking Robots (CLAWAR 2006), No. CONF, pp. 19–27 (2006)

    Google Scholar 

  8. Ermentrout, G.B., Kopell, N.: Inhibition-produced patterning in chains of coupled nonlinear oscillators. SIAM J. Appl. Math. 54(2), 478–507 (1994)

    Article  MathSciNet  Google Scholar 

  9. Homchanthanakul, J., Ngamkajornwiwat, P., Teerakittikul, P., Manoonpong, P.: Neural control with an artificial hormone system for energy-efficient compliant terrain locomotion and adaptation of walking robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019), pp. 5475–5482 (2019)

    Google Scholar 

  10. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  11. Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)

    Article  Google Scholar 

  12. Lu, Q., Zhang, Z., Yue, C.: The programmable CPG model based on matsuoka oscillator and its application to robot locomotion. Int. J. Model. Simul. Sci. Comput. 11, 2050018 (2020)

    Article  Google Scholar 

  13. Marbach, D., Ijspeert, A.J.: Online optimization of modular robot locomotion. In: Proceedings of the IEEE International Conference Mechatronics and Automation, vol. 1, pp. 248–253. IEEE (2005)

    Google Scholar 

  14. Nassour, J., Hénaff, P., Benouezdou, F., Cheng, G.: Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots. Biol. Cybern. 108(3), 291–303 (2014)

    Article  Google Scholar 

  15. Okada, M., Nakamura, D., Nakamura, Y.: On-line and hierarchical design methods of dynamics based information processing system. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), vol. 1, pp. 954–959. IEEE (2003)

    Google Scholar 

  16. Pasemann, F., Hild, M., Zahedi, K.: SO(2)-networks as neural oscillators. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 144–151. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44868-3_19

    Chapter  Google Scholar 

  17. Pitchai, M., et al.: CPG driven RBF network control with reinforcement learning for gait optimization of a dung beetle-like robot. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11727, pp. 698–710. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30487-4_53

    Chapter  Google Scholar 

  18. Righetti, L., Buchli, J., Ijspeert, A.J.: Dynamic Hebbian learning in adaptive frequency oscillators. Physica D 216(2), 269–281 (2006)

    Article  MathSciNet  Google Scholar 

  19. Righetti, L., Ijspeert, A.J.: Programmable central pattern generators: an application to biped locomotion control. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 1585–1590. IEEE (2006)

    Google Scholar 

  20. Rohmer, E., Singh, S.P.N., Freese, M.: CoppeliaSim (formerly V-REP): a versatile and scalable robot simulation framework. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS) (2013). www.coppeliarobotics.com

  21. Thor, M., Manoonpong, P.: Error-based learning mechanism for fast online adaptation in robot motor control. IEEE Trans. Neural Netw. Learn. Syst. 31, 2042–2051 (2019)

    Article  Google Scholar 

  22. Xiong, X., Wörgötter, F., Manoonpong, P.: Adaptive and energy efficient walking in a hexapod robot under neuromechanical control and sensorimotor learning. IEEE Trans. Cybern. 46(11), 2521–2534 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

We thank Mathias Thor for his technical support on the MORF robot simulation and acknowledge financial support by the VISTEC research grant on bioinspired robotics [P.M. (PI)] and in part by the NUAA Research Fund [P.M. (PI), P.N.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nat Dilokthanakul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chuthong, T., Leung, B., Tiraborisute, K., Ngamkajornwiwat, P., Manoonpong, P., Dilokthanakul, N. (2020). Dynamical State Forcing on Central Pattern Generators for Efficient Robot Locomotion Control. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12533. Springer, Cham. https://doi.org/10.1007/978-3-030-63833-7_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63833-7_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63832-0

  • Online ISBN: 978-3-030-63833-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics