Skip to main content

New Reactivity of Amine Radical Cations and Their Related Species

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Part of the book series: Springer Handbooks ((SHB))

Abstract

Nitrogen-centered radicals, including amine radical cations, provide unique and exceptional reactivity that distinguishes them from closed-shell nitrogen species. They enable many highly synthetically valuable transformations, such as addition to π bonds and hydrogen atom abstraction, which are difficult to achieve by closed-shell nitrogen species. Despite their vast potential, they have remained underutilized until recently. However, the rapid advancement in photoredox catalysis has fueled a rise of the number of methods enabled by these species.

For nitrogen-centered radicals, the impact of photoredox catalysis is profound and multifold. The versatility in quenching the excited photocatalyst via reductive or oxidative PET or PCET allows structurally diverse nitrogen-containing compounds to serve as precursors. Moreover, visible light photoredox catalysis unleashes some unique reactivity, such as performing redox-neutral reactions and anti-Markovnikov addition to π bonds that would otherwise be challenging. Finally, the barrier to merge visible light photocatalysis with another type of catalysis is significantly lower than dual catalysis using traditional radical methods, which allows a synergistic catalysis to maximize nitrogen-centered radicals’ utility. In this chapter, three types of reactions, namely, formal [3+2] cycloadditions, hydrogen atom abstraction, and hydroamination/hydroaminoalkylation, will be discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zard, S.Z.: Recent progress in the generation and use of nitrogen-centered radicals. Chem. Soc. Rev. 37(8), 1603–1618 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. Kärkäs, M.D.: Photochemical generation of nitrogen-centered amidyl, hydrazonyl, and imidyl radicals: methodology developments and catalytic applications. ACS Catal. 7(8), 4999–5022 (2017)

    Article  CAS  Google Scholar 

  3. Xiong, T., Zhang, Q.: New amination strategies based on nitrogen-centered radical chemistry. Chem. Soc. Rev. 45(11), 3069–3087 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. Stella, L.: Radicals in Organic Synthesis, vol. 2, 1st edn. Wiley-VCH, Weinheim (2001)

    Google Scholar 

  5. Chow, Y.L., Danen, W.C., Nelsen, S.F., Rosenblatt, D.H.: Nonaromatic aminium radicals. Chem. Rev. 78(3), 243–274 (1978)

    Article  CAS  Google Scholar 

  6. Kitagawa, O., Miyaji, S., Yamada, Y., Fujiwara, H., Taguchi, T.: Iodine atom transfer [3 + 2] cycloaddition reaction with electron-rich alkenes using N-tosyliodoaziridine derivatives as novel azahomoallyl radical precursors. J. Org. Chem. 68(8), 3184–3189 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. Guin, J., Froehlich, R., Studer, A.: Thiol-catalyzed stereoselective transfer hydroamination of olefins with N-aminated dihydropyridines. Angew. Chem. Int. Ed. 47(4), 779–782 (2008)

    Article  CAS  Google Scholar 

  8. Greulich, T.W., Daniliuc, C.G., Studer, A.: N-aminopyridinium salts as precursors for N-centered radicals – direct amidation of arenes and heteroarenes. Org. Lett. 17(2), 254–257 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. Liu, F., Liu, K., Yuan, X., Li, C.: 5-Exo versus 6-Endo cyclization of primary aminyl radicals: an experimental and theoretical investigation. J. Org. Chem. 72(26), 10231–10234 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. Newcomb, M., Marquardt, D.J., Deeb, T.M.: N-Hydroxypyridine-2-thione carbamates. IV. A comparison of 5-exo cyclizations of an aminyl radical and an aminium cation radical. Tetrahedron. 46(7), 2317–2328 (1990)

    Article  CAS  Google Scholar 

  11. Prier, C.K., Rankic, D.A., MacMillan, D.W.C.: Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113(7), 5322–5363 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arias-Rotondo, D.M., McCusker, J.K.: The photophysics of photoredox catalysis: a roadmap for catalyst design. Chem. Soc. Rev. 45(21), 5803–5820 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. Nguyen, L.Q., Knowles, R.R.: Catalytic C–N bond-forming reactions enabled by proton-coupled electron transfer activation of amide N–H bonds. ACS Catal. 6(5), 2894–2903 (2016)

    Article  CAS  Google Scholar 

  14. Hu, J., Wang, J., Nguyen, T.H., Zheng, N.: The chemistry of amine radical cations produced by visible light photoredox catalysis. Beilstein J. Org. Chem. 9, 1977–2001 (2013)., No 234, 25 pp, No 234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Svejstrup, T.D., Ruffoni, A., Juliá, F., Aubert, V.M., Leonori, D.: Synthesis of arylamines via aminium radicals. Angew. Chem. Int. Ed. 56(47), 14948–14952 (2017)

    Article  CAS  Google Scholar 

  16. Ruffoni, A., Juliá, F., Svejstrup, T.D., McMillan, A.J., Douglas, J.J., Leonori, D.: Practical and regioselective amination of arenes using alkyl amines. Nat. Chem. 11(5), 426–433 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. Chu, J.C.K., Rovis, T.: Amide-directed photoredox-catalysed C–C bond formation at unactivated sp3 C–H bonds. Nature. 539, 272 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chen, D.-F., Chu, J.C.K., Rovis, T.: Directed γ-C(sp3)–H alkylation of carboxylic acid derivatives through visible light photoredox catalysis. J. Am. Chem. Soc. 139(42), 14897–14900 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi, G.J., Zhu, Q., Miller, D.C., Gu, C.J., Knowles, R.R.: Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature. 539, 268 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu, Q., Graff, D.E., Knowles, R.R.: Intermolecular anti-Markovnikov hydroamination of unactivated alkenes with sulfonamides enabled by proton-coupled electron transfer. J. Am. Chem. Soc. 140(2), 741–747 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi, G.J., Knowles, R.R.: Catalytic alkene carboaminations enabled by oxidative proton-coupled electron transfer. J. Am. Chem. Soc. 137(29), 9226–9229 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, K., Wang, L., Colón-Rodríguez, S., Flechsig, G.-U., Wang, T.: Amidyl radical directed remote allylation of unactivated sp3 C−H bonds by organic photoredox catalysis. Angew. Chem. Int. Ed. 58(6), 1774–1778 (2019)

    Article  CAS  Google Scholar 

  23. Roberts, B.P.: Polarity-reversal catalysis of hydrogen-atom abstraction reactions: concepts and applications in organic chemistry. Chem. Soc. Rev. 28(1), 25–35 (1999)

    Article  CAS  Google Scholar 

  24. Newcomb, M., Horner, J.H., Shahin, H.: Rate constants for aminyl radical reactions. Tetrahedron Lett. 34(35), 5523–5526 (1993)

    Article  CAS  Google Scholar 

  25. Wagner, B.D., Ruel, G., Lusztyk, J.: Absolute kinetics of aminium radical reactions with olefins in acetonitrile solution1. J. Am. Chem. Soc. 118(1), 13–19 (1996)

    Article  CAS  Google Scholar 

  26. An, X.-D., Yu, S.: Photoredox-catalyzed C(sp2)–N coupling reactions. Tetrahedron Lett. 59(17), 1605–1613 (2018)

    Article  CAS  Google Scholar 

  27. Paul, V., Roberts, B.P.: Polarity reversal catalysis of hydrogen atom abstraction reactions. J. Chem. Soc. Chem. Commun. (17), 1322–1324 (1987)

    Google Scholar 

  28. Le, C., Liang, Y., Evans, R.W., Li, X., MacMillan, D.W.C.: Selective sp3 C–H alkylation via polarity-match-based cross-coupling. Nature. 547(7661), 79–83 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, X., MacMillan, D.W.C.: Direct aldehyde C–H arylation and alkylation via the combination of nickel, hydrogen atom transfer, and photoredox catalysis. J. Am. Chem. Soc. 139(33), 11353–11356 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Twilton, J., Christensen, M., DiRocco, D.A., Ruck, R.T., Davies, I.W., MacMillan, D.W.C.: Selective hydrogen atom abstraction through induced bond polarization: direct α-arylation of alcohols through photoredox, HAT, and nickel catalysis. Angew. Chem. Int. Ed. 57(19), 5369–5373 (2018)

    Article  CAS  Google Scholar 

  31. Stephenson, C.R.J., Yoon, T.P., MacMillan, D.W.C., Morris, S.A., Nguyen, T., Zheng, N.: Visible light mediated cycloaddition reactions. In: Stephenson, C.R.J., Yoon, T.P., MacMillan, D.W.C. (eds.) Visible Light Photocatalysis in Organic Chemistry, pp. 129–158. Wiley-VCH Verlag GmbH & Co. KGaA (2018)

    Chapter  Google Scholar 

  32. Maity, S., Zhu, M., Shinabery, R.S., Zheng, N.: Intermolecular [3+2] cycloaddition of cyclopropylamines with olefins by visible-light photocatalysis. Angew. Chem. Int. Ed. 51(1), 222–226 (2012)

    Article  CAS  Google Scholar 

  33. Nguyen, T.H., Maity, S., Zheng, N.: Visible light mediated intermolecular [3 + 2] annulation of cyclopropylanilines with alkynes. Beilstein J. Org. Chem. 10, 975, 6 pp–980 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Nguyen, T.H., Morris, S.A., Zheng, N.: Intermolecular [3+2] annulation of cyclopropylanilines with alkynes, enynes, and diynes via visible light photocatalysis. Adv. Synth. Catal. 356(13), 2831–2837 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, J., Zheng, N.: The cleavage of a C-C bond in cyclobutylanilines by visible-light photoredox catalysis: development of a [4+2] annulation method. Angew. Chem., Int. Ed. 54(39), 11424–11427 (2015)

    Article  CAS  Google Scholar 

  36. Wang, J., Nguyen, T.H., Zheng, N.: Photoredox-catalyzed [4+2] annulation of cyclobutylanilines with alkenes, alkynes, and diynes in continuous flow. Sci. China Chem. 59(2), 180–183 (2016)

    Article  CAS  Google Scholar 

  37. Wang, J., Mao, C., Feng, P., Zheng, N.: Visible-light-mediated [4+2] annulation of N-cyclobutylanilines with alkynes catalyzed by self-doped Ti3+@TiO2. Chem. Eur. J. 23(61), 15396–15403 (2017)

    Article  CAS  PubMed  Google Scholar 

  38. Morris, S.A., Wang, J., Zheng, N.: The prowess of photogenerated amine radical cations in cascade reactions: from carbocycles to heterocycles. Acc. Chem. Res. 49(9), 1957–1968 (2016)

    Article  CAS  PubMed  Google Scholar 

  39. Zhu, M., Zheng, N.: Photoinduced cleavage of N-N bonds of aromatic hydrazines and hydrazides by visible light. Synthesis. 14, 2223–2236 (2011)

    Google Scholar 

  40. Wille, U.: Radical cascades initiated by intermolecular radical addition to alkynes and related triple bond systems. Chem. Rev. 113(1), 813–853 (2013)

    Article  CAS  PubMed  Google Scholar 

  41. Verkade, J.M.M., van Hemert, L.J.C., Quaedflieg, P.J.L.M., Alsters, P.L., van Delft, F.L., Rutjes, F.P.J.T.: Mild and efficient deprotection of the amine protecting p-methoxyphenyl (PMP) group. Tetrahedron Lett. 47(46), 8109–8113 (2006)

    Article  CAS  Google Scholar 

  42. Staveness, D., Sodano, T.M., Li, K., Burnham, E.A., Jackson, K.D., Stephenson, C.R.J.: Providing a new aniline bioisostere through the photochemical production of 1-aminonorbornanes. Chem. 5(1), 215–226 (2019)

    Article  CAS  PubMed  Google Scholar 

  43. Nakajima, K., Miyake, Y., Nishibayashi, Y.: Synthetic utilization of α-aminoalkyl radicals and related species in visible light photoredox catalysis. Acc. Chem. Res. 49(9), 1946–1956 (2016)

    Article  CAS  PubMed  Google Scholar 

  44. Xuan, J., Zeng, T.T., Feng, Z.J., Deng, Q.H., Chen, J.R., Lu, L.Q., Xiao, W.J., Alper, H.: Redox-neutral α-allylation of amines by combining palladium catalysis and visible-light photoredox catalysis. Angew. Chem. Int. Ed. 54, 1625 (2015)

    Article  CAS  Google Scholar 

  45. Zhang, H.-H., Zhao, J.-J., Yu, S.: Enantioselective α-allylation of anilines enabled by a combined palladium and photoredox catalytic system. ACS Catal. 10(8), 4710–4716 (2020)

    Article  CAS  Google Scholar 

  46. Shaw, M.H., Shurtleff, V.W., Terrett, J.A., Cuthbertson, J.D., MacMillan, D.W.C.: Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. Science. 352(6291), 1304 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Diallo, A.G., Roy, D., Gaillard, S., Lautens, M., Renaud, J.-L.: Aminomethylation of oxabenzonorbornadienes via the merger of photoredox and nickel catalysis. Org. Lett. 22(6), 2442–2447 (2020)

    Article  CAS  PubMed  Google Scholar 

  48. Constantin, T., Zanini, M., Regni, A., Sheikh, N.S., Juliá, F., Leonori, D.: Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides. Science. 367(6481), 1021 (2020)

    Article  CAS  PubMed  Google Scholar 

  49. Luo, W., Yang, J.-D., Cheng, J.-P.: Toward rational understandings of α-C–H functionalization: energetic studies of representative tertiary amines. iScience. 23(2), 100851 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nakajima, K., Kitagawa, M., Ashida, Y., Miyake, Y., Nishibayashi, Y.: Synthesis of nitrogen heterocycles via α-aminoalkyl radicals generated from α-silyl secondary amines under visible light irradiation. Chem. Commun. 50, 8900 (2014)

    Article  CAS  Google Scholar 

  51. Ruiz Espelt, L., McPherson, I.S., Wiensch, E.M., Yoon, T.P.: Enantioselective conjugate additions of α-amino radicals via cooperative photoredox and Lewis acid catalysis. J. Am. Chem. Soc. 137, 2452 (2015)

    Article  CAS  PubMed  Google Scholar 

  52. Zuo, Z., Ahneman, D.T., Chu, L., Terrett, J.A., Doyle, A.G., MacMillan, D.W.C.: Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science. 345, 437 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chu, L., Ohta, C., Zuo, Z., MacMillan, D.W.C.: Carboxylic acids as a traceless activation group for conjugate additions: a three-step synthesis of (±)-pregabalin. J. Am. Chem. Soc. 136, 10886 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miyazawa, K., Koike, T., Akita, M.: Hydroaminomethylation of olefins with aminomethyltrifluoroborate by photoredox catalysis. Adv. Synth. Catal. 356, 2749 (2014)

    Article  CAS  Google Scholar 

  55. Qvortrup, K., Rankic, D.A., MacMillan, D.W.C.: A general strategy for organocatalytic activation of C–H bonds via photoredox catalysis: direct arylation of benzylic ethers. J. Am. Chem. Soc. 136, 626 (2014)

    Article  CAS  PubMed  Google Scholar 

  56. Liu, J., Xie, J., Zhu, C.: Photoredox organocatalytic α-amino C(sp3)–H functionalization for the synthesis of 5-membered heterocyclic γ-amino acid derivatives. Org. Chem. Front. 4(12), 2433–2436 (2017)

    Article  CAS  Google Scholar 

  57. Ashley, M.A., Yamauchi, C., Chu, J.C.K., Otsuka, S., Yorimitsu, H., Rovis, T.: Photoredox-catalyzed site-selective α-C(sp3)−H alkylation of primary amine derivatives. Angew. Chem. Int. Ed. 58(12), 4002–4006 (2019)

    Article  CAS  Google Scholar 

  58. Ide, T., Barham, J.P., Fujita, M., Kawato, Y., Egami, H., Hamashima, Y.: Regio- and chemoselective Csp3–H arylation of benzylamines by single electron transfer/hydrogen atom transfer synergistic catalysis. Chem. Sci. 9(44), 8453–8460 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ye, J., Kalvet, I., Schoenebeck, F., Rovis, T.: Direct α-alkylation of primary aliphatic amines enabled by CO2 and electrostatics. Nat. Chem. 10(10), 1037–1041 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. McManus, J.B., Onuska, N.P.R., Nicewicz, D.A.: Generation and alkylation of α-carbamyl radicals via organic photoredox catalysis. J. Am. Chem. Soc. 140(29), 9056–9060 (2018)

    Article  CAS  PubMed  Google Scholar 

  61. Loh, Y.Y., Nagao, K., Hoover, A.J., Hesk, D., Rivera, N.R., Colletti, S.L., Davies, I.W., MacMillan, D.W.C.: Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science. 358(6367), 1182 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dénès, F., Pichowicz, M., Povie, G., Renaud, P.: Thiyl radicals in organic synthesis. Chem. Rev. 114(5), 2587–2693 (2014)

    Article  PubMed  CAS  Google Scholar 

  63. Escoubet, S., Gastaldi, S., Vanthuyne, N., Gil, G., Siri, D., Bertrand, M.P.: Thiyl radical mediated racemization of benzylic amines. Eur. J. Org. Chem. 2006(14), 3242–3250 (2006)

    Article  CAS  Google Scholar 

  64. Ovortrup, K., Rankic, D.A., MacMillan, D.W.C.: A general strategy for organocatalytic activation of C–H bonds via photoredox catalysis: direct arylation of benzylic ethers. J. Am. Chem. Soc. 136(2), 626–629 (2014)

    Article  CAS  Google Scholar 

  65. Cuthbertson, J.D., MacMillan, D.W.C.: The direct arylation of allylic sp3 C–H bonds via organic and photoredox catalysis. Nature. 519, 74 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, W., Duan, Y., Zhang, M., Cheng, J., Zhu, C.: A photoredox catalyzed radical–radical coupling reaction: facile access to multi-substituted nitrogen heterocycles. Chem. Commun. 52(48), 7596–7599 (2016)

    Article  CAS  Google Scholar 

  67. Kato, S., Saga, Y., Kojima, M., Fuse, H., Matsunaga, S., Fukatsu, A., Kondo, M., Masaoka, S., Kanai, M.: Hybrid catalysis enabling room-temperature hydrogen gas release from N-heterocycles and tetrahydronaphthalenes. J. Am. Chem. Soc. 139(6), 2204–2207 (2017)

    Article  CAS  PubMed  Google Scholar 

  68. Dell'Amico, D.B., Calderazzo, F., Labella, L., Marchetti, F., Pampaloni, G.: Converting carbon dioxide into carbamato derivatives. Chem. Rev. 103(10), 3857–3898 (2003)

    Article  PubMed  CAS  Google Scholar 

  69. Lee, M., Sanford, M.S.: Platinum-catalyzed, terminal-selective C(sp3)–H oxidation of aliphatic amines. J. Am. Chem. Soc. 137(40), 12796–12799 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Howell, J.M., Feng, K., Clark, J.R., Trzepkowski, L.J., White, M.C.: Remote oxidation of aliphatic C-H bonds in nitrogen-containing molecules. J. Am. Chem. Soc. 137(46), 14590–14593 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Davis, H.J., Phipps, R.J.: Harnessing non-covalent interactions to exert control over regioselectivity and site-selectivity in catalytic reactions. Chem. Sci. 8(2), 864–877 (2017)

    Article  CAS  PubMed  Google Scholar 

  72. Musacchio, A.J., Lainhart, B.C., Zhang, X., Naguib, S.G., Sherwood, T.C., Knowles, R.R.: Catalytic intermolecular hydroaminations of unactivated olefins with secondary alkyl amines. Science. 355(6326), 727 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Müller, T.E., Hultzsch, K.C., Yus, M., Foubelo, F., Tada, M.: Hydroamination: direct addition of amines to alkenes and alkynes. Chem. Rev. 108(9), 3795–3892 (2008)

    Article  PubMed  CAS  Google Scholar 

  74. Zhu, S., Niljianskul, N., Buchwald, S.L.: Enantio- and regioselective CuH-catalyzed hydroamination of alkenes. J. Am. Chem. Soc. 135(42), 15746–15749 (2013)

    Article  CAS  PubMed  Google Scholar 

  75. Gui, J., Pan, C.-M., Jin, Y., Qin, T., Lo, J.C., Lee, B.J., Spergel, S.H., Mertzman, M.E., Pitts, W.J., La Cruz, T.E., Schmidt, M.A., Darvatkar, N., Natarajan, S.R., Baran, P.S.: Practical olefin hydroamination with nitroarenes. Science. 348(6237), 886 (2015)

    Article  CAS  PubMed  Google Scholar 

  76. Musacchio, A.J., Nguyen, L.Q., Beard, G.H., Knowles, R.R.: Catalytic olefin hydroamination with aminium radical cations: a photoredox method for direct C-N bond formation. J. Am. Chem. Soc. 136(35), 12217–12220 (2014)

    Article  CAS  PubMed  Google Scholar 

  77. Lowry, M.S., Goldsmith, J.I., Slinker, J.D., Rohl, R., Pascal Jr., R.A., Malliaras, G.G., Bernhard, S.: Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17(23), 5712–5719 (2005)

    Article  CAS  Google Scholar 

  78. Campos, K.R.: Direct sp3 C–H bond activation adjacent to nitrogen in heterocycles. Chem. Soc. Rev. 36(7), 1069–1084 (2007)

    Article  CAS  PubMed  Google Scholar 

  79. Gehrtz, P.H., Hirschbeck, V., Ciszek, B., Fleischer, I.: Carbonylations of alkenes in the total synthesis of natural compounds. Synthesis. 48(11), 1573–1596 (2016)

    Article  CAS  Google Scholar 

  80. Crozet, D., Urrutigoïty, M., Kalck, P.: Recent advances in amine synthesis by catalytic hydroaminomethylation of alkenes. ChemCatChem. 3(7), 1102–1118 (2011)

    Article  CAS  Google Scholar 

  81. Klinkenberg, J.L., Hartwig, J.F.: Catalytic organometallic reactions of ammonia. Angew. Chem. Int. Ed. 50(1), 86–95 (2011)

    Article  CAS  Google Scholar 

  82. Herzon, S.B., Hartwig, J.F.: Hydroaminoalkylation of unactivated olefins with dialkylamines. J. Am. Chem. Soc. 130(45), 14940–14941 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Thullen, S.M., Rovis, T.: A mild hydroaminoalkylation of conjugated dienes using a unified cobalt and photoredox catalytic system. J. Am. Chem. Soc. 139(43), 15504–15508 (2017)

    Article  CAS  PubMed  Google Scholar 

  84. Ruhl, K.E., Rovis, T.: Visible light-gated cobalt catalysis for a spatially and temporally resolved [2+2+2] cycloaddition. J. Am. Chem. Soc. 138(48), 15527–15530 (2016)

    Article  CAS  PubMed  Google Scholar 

  85. Maity, S., Zheng, N.: A visible-light-mediated oxidative C-N bond formation/aromatization cascade: photocatalytic preparation of N-arylindoles. Angew. Chem. Int. Ed. 51(38), 9562–9566 (2012) S9562/1-S9562/88

    Article  CAS  Google Scholar 

  86. Morris, S.A., Nguyen, T.H., Zheng, N.: Diastereoselective oxidative C-N/C-O and C-N/C-N bond formation tandems initiated by visible light: synthesis of fused N-arylindolines. Adv. Synth. Catal. 357(10), 2311–2316 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, Q., Hu, J., Zheng, N.: A photocatalyzed cascade approach toward the tetracyclic core of akuammiline alkaloids. Org. Lett. 21(3), 614–617 (2019)

    Article  CAS  PubMed  Google Scholar 

  88. Su, Z., Mariano, P.S., Falvey, D.E., Yoon, U.C., Oh, S.W.: Dynamics of anilinium radical α-heterolytic fragmentation processes. Electrofugal group, substituent, and medium effects on desilylation, decarboxylation, and retro-aldol cleavage pathways. J. Am. Chem. Soc. 120(41), 10676–10686 (1998)

    Article  CAS  Google Scholar 

  89. Zhu, Q., Gentry, E.C., Knowles, R.R.: Catalytic carbocation generation enabled by the mesolytic cleavage of alkoxyamine radical cations. Angew. Chem. Int. Ed. 55(34), 9969–9973 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Morris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, N., Morris, S.A. (2022). New Reactivity of Amine Radical Cations and Their Related Species. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_51

Download citation

Publish with us

Policies and ethics