Skip to main content

Photomedicine with Inorganic Complexes: A Bright Future

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Abstract

Photo-induced reactions have the potential to revolutionize the fields of photomedicine and intelligent drug delivery by providing means of specifically inducing a chemical transformation in biological environments. The molecule that absorbs light and engages in photo-induced reactions is called the photosensitizer, and is the key component in this process. It transforms photon energy into a variety of reactions, such as photosensitized oxidations in photodynamic therapy (PDT) and ligand exchange in photoactivated chemotherapy (PACT). Ruthenium complexes, in particular, offer the possibility to maximize and fine-tune each of these reactions by changing the electronic properties, hydrophobicity, and steric hindrance of the ligands, thus affecting the energy and reactivity of the excited states. The field has advanced immensely in the last decade and we aim here to report on major achievements of ruthenium compounds for phototherapy. We will also discuss the mechanism of light-induced toxicity, the potential of upconverting systems for the activation of this type of drugs, as well as initial steps towards commercial applications of ruthenium complexes as PDT agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasper, S., Rogers, S.L., Yancey, A.L., Schulz, P.M., Skwerer, R.G., Rosenthal, N.E.: Phototherapy in subsyndromal seasonal affective disorder (S-SAD) and “diagnosed” controls. Pharmacopsychiatry. 21(06), 428–429 (1988)

    Article  CAS  PubMed  Google Scholar 

  2. Maisels, M.J., McDonagh, A.F.: Phototherapy for neonatal jaundice. N. Engl. J. Med. 358(9), 920–928 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, P., Wu, M.X.: A clinical review of phototherapy for psoriasis. Lasers Med. Sci. 33(1), 173–180 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. Bonnet, S.: Why develop photoactivated chemotherapy? Dalton Trans. 47(31), 10330–10343 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. Velema, W.A., Szymanski, W., Feringa, B.L.: Photopharmacology: beyond proof of principle. J. Am. Chem. Soc. 136(6), 2178–2191 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. Farrer, N.J., Salassa, L., Sadler, P.J.: Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Trans. 38(48), 10690–10701 (2009)

    Article  CAS  Google Scholar 

  7. Gai, S., Yang, G., Yang, P., He, F., Lin, J., Jin, D., Xing, B.: Recent advances in functional nanomaterials for light–triggered cancer therapy. Nano Today. 19, 146–187 (2018)

    Article  CAS  Google Scholar 

  8. Mari, C., Pierroz, V., Ferrari, S., Gasser, G.: Combination of Ru(ii) complexes and light: new frontiers in cancer therapy. Chem. Sci. 6(5), 2660–2686 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Torre, L.A., Siegel, R.L., Ward, E.M., Jemal, A.: Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol. Biomark. Prev. 25(1), 16–27 (2016)

    Article  Google Scholar 

  10. Jaque, D., Martínez Maestro, L., del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J.L., Martín Rodríguez, E., García Solé, J.: Nanoparticles for photothermal therapies. Nanoscale. 6(16), 9494–9530 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. Castano, A.P., Demidova, T.N., Hamblin, M.R.: Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther. 1(4), 279–293 (2004)

    Article  CAS  Google Scholar 

  12. Josefsen, L.B., Boyle, R.W.: Photodynamic therapy and the development of metal-based photosensitisers. Metal-Based Drugs. 2008, 276109 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bacellar, I.O.L., Oliveira, M.C., Dantas, L.S., Costa, E.B., Junqueira, H.C., Martins, W.K., Durantini, A.M., Cosa, G., Di Mascio, P., Wainwright, M., Miotto, R., Cordeiro, R.M., Miyamoto, S., Baptista, M.S.: Photosensitized membrane permeabilization requires contact-dependent reactions between photosensitizer and lipids. J. Am. Chem. Soc. 140(30), 9606–9615 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. Raab, O.: Uber die wirkung Fluorescirender Stoffe auf Infusorien. Z. Biol. 39, 524–546 (1900)

    CAS  Google Scholar 

  15. Jesionek, A., von Tappenier, H.: Zur behandlung der hautcarcinomit mit fluorescierenden stoffen. Münchener medizinische Wochenschrift. 50, 2042–2044 (1903)

    Google Scholar 

  16. Ackroyd, R., Kelty, C., Brown, N., Reed, M.: The history of photodetection and photodynamic therapy. Photochem. Photobiol. 74(5), 656–669 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Sies, H.: Oxidative stress: a concept in redox biology and medicine. Redox Biol. 4, 180–183 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Halliwell, B., Gutteridge, J.M.: Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219(1), 1–14 (1984)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tonolli, P.N., Chiarelli-Neto, O., Santacruz-Perez, C., Junqueira, H.C., Watanabe, I.-S., Ravagnani, F.G., Martins, W.K., Baptista, M.S.: Lipofuscin generated by UVA turns keratinocytes photosensitive to visible light. J. Invest. Dermatol. 137(11), 2447–2450 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. Moan, J., Juzenas, P.: Singlet oxygen in photosensitization. J. Environ. Pathol. Toxicol. Oncol. 25(1–2), 29–50 (2006)

    PubMed  Google Scholar 

  21. Dougherty, T.J., Gomer, C.J., Henderson, B.W., Jori, G., Kessel, D., Korbelik, M., Moan, J., Peng, Q.: Photodynamic therapy. J. Natl. Cancer Inst. 90(12), 889–905 (1998)

    Article  CAS  PubMed  Google Scholar 

  22. Spikes, J.D.: Chlorins as photosensitizers in biology and medicine. J. Photoch. Photobio. B. 6(3), 259–274 (1990)

    Article  CAS  Google Scholar 

  23. Sternberg, E.D., Dolphin, D.: Second generation photodynamic agents: a review. J. Clin. Laser Med. Surg. 11(5), 233–241 (1993)

    Article  CAS  PubMed  Google Scholar 

  24. Kou, J., Dou, D., Yang, L.: Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget. 8(46), 81591–81603 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Heinemann, F., Karges, J., Gasser, G.: Critical overview of the use of Ru(II) polypyridyl complexes as photosensitizers in one-photon and two-photon photodynamic therapy. Acc. Chem. Res. 50(11), 2727–2736 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. Doherty, R.E., Sazanovich, I.V., McKenzie, L.K., Stasheuski, A.S., Coyle, R., Baggaley, E., Bottomley, S., Weinstein, J.A., Bryant, H.E.: Photodynamic killing of cancer cells by a Platinum(II) complex with cyclometallating ligand. Sci. Rep. 6(1), 22668 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lazic, S., Kaspler, P., Shi, G., Monro, S., Sainuddin, T., Forward, S., Kasimova, K., Hennigar, R., Mandel, A., McFarland, S., Lilge, L.: Novel osmium-based coordination complexes as photosensitizers for panchromatic photodynamic therapy. Photochem. Photobiol. 93(5), 1248–1258 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. Mari, C., Pierroz, V., Rubbiani, R., Patra, M., Hess, J., Spingler, B., Oehninger, L., Schur, J., Ott, I., Salassa, L., Ferrari, S., Gasser, G.: DNA intercalating RuII polypyridyl complexes as effective photosensitizers in photodynamic therapy. Chem. Eur. J. 20(44), 14421–14436 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. Pierroz, V., Rubbiani, R., Gentili, C., Patra, M., Mari, C., Gasser, G., Ferrari, S.: Dual mode of cell death upon the photo-irradiation of a RuII polypyridyl complex in interphase or mitosis. Chem. Sci. 7(9), 6115–6124 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fong, J., Kasimova, K., Arenas, Y., Kaspler, P., Lazic, S., Mandel, A., Lilge, L.: A novel class of ruthenium-based photosensitizers effectively kills in vitro cancer cells and in vivo tumors. Photochem. Photobiol. Sci. 14(11), 2014–2023 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. Shi, G., Monro, S., Hennigar, R., Colpitts, J., Fong, J., Kasimova, K., Yin, H., DeCoste, R., Spencer, C., Chamberlain, L., Mandel, A., Lilge, L., McFarland, S.A.: Ru(II) dyads derived from α-oligothiophenes: a new class of potent and versatile photosensitizers for PDT. Coord. Chem. Rev. 282-283, 127–138 (2015)

    Article  CAS  Google Scholar 

  32. Roundhill, D.M.: Photochemistry, photophysics, and photoredox reactions of Ru(bpy)32+ and related complexes. Photochem. Photophys. Metal Complex., 165–215 (1994)

    Google Scholar 

  33. Kalyanasundaram, K.: Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coord. Chem. Rev. 46, 159–244 (1982)

    Article  CAS  Google Scholar 

  34. Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P., Von Zelewsky, A.: Ru (II) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence. Coord. Chem. Rev. 84, 85–277 (1988)

    Article  CAS  Google Scholar 

  35. Ito, H., Matsui, H.: Mitochondrial reactive oxygen species and photodynamic therapy. Laser Therapy. 25(3), 193–199 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  36. O’Connor, A.E., Gallagher, W.M., Byrne, A.T.: Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol. 85(5), 1053–1074 (2009)

    Article  PubMed  CAS  Google Scholar 

  37. De Rosa, F.S., Bentley, M.V.: Photodynamic therapy of skin cancers: sensitizers, clinical studies and future directives. Pharmacol. Res. 17(12), 1447–1455 (2000)

    Article  Google Scholar 

  38. Triesscheijn, M., Baas, P., Schellens, J.H.M., Stewart, F.A.: Photodynamic therapy in oncology. Oncologist. 11(9), 1034–1044 (2006)

    Article  CAS  PubMed  Google Scholar 

  39. Davids, L.M., Kleemann, B.: Combating melanoma: the use of photodynamic therapy as a novel, adjuvant therapeutic tool. Cancer Treat. Rev. 37(6), 465–475 (2011)

    CAS  PubMed  Google Scholar 

  40. Blackmore, L., Moriarty, R., Dolan, C., Adamson, K., Forster, R.J., Devocelle, M., Keyes, T.E.: Peptide directed transmembrane transport and nuclear localization of Ru(II) polypyridyl complexes in mammalian cells. Chem. Commun. 49(26), 2658–2660 (2013)

    Article  CAS  Google Scholar 

  41. Barrett, A.J., Kennedy, J.C., Jones, R.A., Nadeau, P., Pottier, R.H.: The effect of tissue and cellular pH on the selective biodistribution of porphyrin-type photochemotherapeutic agents: a volumetric titration study. J. Photochem. Photobiobiol. B. 6(3), 309–323 (1990)

    Article  CAS  Google Scholar 

  42. Azzouzi, A.-R., Vincendeau, S., Barret, E., Cicco, A., Kleinclauss, F., van der Poel, H.G., Stief, C.G., Rassweiler, J., Salomon, G., Solsona, E., Alcaraz, A., Tammela, T.T., Rosario, D.J., Gomez-Veiga, F., Ahlgren, G., Benzaghou, F., Gaillac, B., Amzal, B., Debruyne, F.M.J., Fromont, G., Gratzke, C., Emberton, M., PCM301 Study Group: Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol. 18(2), 181–191 (2017)

    Google Scholar 

  43. Vakrat-Haglili, Y., Weiner, L., Brumfeld, V., Brandis, A., Salomon, Y., Mcllroy, B., Wilson, B.C., Pawlak, A., Rozanowska, M., Sarna, T., Scherz, A.: The microenvironment effect on the generation of reactive oxygen species by Pd−bacteriopheophorbide. J. Am. Chem. Soc. 127(17), 6487–6497 (2005)

    Article  CAS  PubMed  Google Scholar 

  44. Jensen, T.J., Vicente, M.G.H., Luguya, R., Norton, J., Fronczek, F.R., Smith, K.M.: Effect of overall charge and charge distribution on cellular uptake, distribution and phototoxicity of cationic porphyrins in HEp2 cells. J. Photochem. Photobiol. B-Biol. 100(2), 100–111 (2010)

    Article  CAS  Google Scholar 

  45. Pavani, C., Iamamoto, Y., Baptista, M.S.: Mechanism and efficiency of cell death of type II photosensitizers: effect of zinc chelation. Photochem. Photobiol. 88(4), 774–781 (2012)

    Article  CAS  PubMed  Google Scholar 

  46. Müller-Schiffmann, A., Sticht, H., Korth, C.: Hybrid compounds: from simple combinations to nanomachines. BioDrugs. 26(1), 21–31 (2012)

    Article  PubMed  Google Scholar 

  47. Ravanat, J.L., Cadet, J., Araki, K., Toma, H.E., Medeiros, M.H.G., Di Mascio, P.: Supramolecular cationic tetraruthenated porphyrin and light-induced decomposition of 2-deoxyguanosine predominantly via a singlet oxygen-mediated mechanism. Photochem. Photobiol. 68(5), 698–702 (1998)

    CAS  PubMed  Google Scholar 

  48. Zhang, J.-X., Zhou, J.-W., Chan, C.-F., Lau, T.C.-K., Kwong, D.W.J., Tam, H.-L., Mak, N.-K., Wong, K.-L., Wong, W.-K.: Comparative studies of the cellular uptake, subcellular localization, and cytotoxic and phototoxic antitumor properties of ruthenium(II)–porphyrin conjugates with different linkers. Bioconjug. Chem. 23(8), 1623–1638 (2012)

    Article  CAS  PubMed  Google Scholar 

  49. Zhu, X., Zhou, H., Liu, Y., Wen, Y., Wei, C., Yu, Q., Liu, J.: Transferrin/aptamer conjugated mesoporous ruthenium nanosystem for redox-controlled and targeted chemo-photodynamic therapy of glioma. Acta Biomater. 82, 143–157 (2018)

    Article  CAS  PubMed  Google Scholar 

  50. Tsubone, T.M., Martins, W.K., Pavani, C., Junqueira, H.C., Itri, R., Baptista, M.S.: Enhanced efficiency of cell death by lysosome-specific photodamage. Sci. Rep. 7(1), 6734 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Martins, W.K., Santos, N.F., Rocha, C.D.S., Bacellar, I.O.L., Tsubone, T.M., Viotto, A.C., Matsukuma, A.Y., Abrantes, A.B..D.P., Siani, P., Dias, L.G., Baptista, M.S.: Parallel damage in mitochondria and lysosomes is an efficient way to photoinduce cell death. Autophagy. 15(2), 1–21 (2018)

    Google Scholar 

  52. Oliveira, C.S., Turchiello, R., Kowaltowski, A.J., Indig, G.L., Baptista, M.S.: Major determinants of photoinduced cell death: subcellular localization versus photosensitization efficiency. Free Radic. Biol. Med. 51, 824–833 (2011)

    Article  CAS  PubMed  Google Scholar 

  53. Clarke, M., Zhu, F., Frasca, D.: Non-platinum chemotherapeutic metallopharmaceuticals. Chem. Rev. 99(9), 2511–2534 (1999)

    Article  CAS  PubMed  Google Scholar 

  54. Ang, W.H., Dyson, P.J.: Classical and non-classical ruthenium-based anticancer drugs: towards targeted chemotherapy. Eur. J. Inorg. Chem. 2006(20), 4003–4018 (2006)

    Article  CAS  Google Scholar 

  55. Schmitt, F., Govindaswamy, P., Suess-Fink, G., Ang, W.H., Dyson, P.J., Juillerat-Jeanneret, L., Therrien, B.: Ruthenium porphyrin compounds for photodynamic therapy of cancer. J. Med. Chem. 51(6), 1811–1816 (2008)

    Article  CAS  PubMed  Google Scholar 

  56. Liu, Y., Ma, K., Jiao, T., Xing, R., Shen, G., Yan, X.: Water-insoluble photosensitizer nanocolloids stabilized by supramolecular interfacial assembly towards photodynamic therapy. Sci. Rep. 7(1), 42978 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schmitt, F., Govindaswamy, P., Zava, O., Süss-Fink, G., Juillerat-Jeanneret, L., Therrien, B.: Combined arene ruthenium porphyrins as chemotherapeutics and photosensitizers for cancer therapy. J. Biol. Inorg. Chem. 14(1), 101–109 (2008)

    Article  PubMed  CAS  Google Scholar 

  58. Pernot, M., Bastogne, T., Barry, N.P.E., Therrien, B., Koellensperger, G., Hann, S., Reshetov, V., Barberi-Heyob, M.: Systems biology approach for in vivo photodynamic therapy optimization of ruthenium-porphyrin compounds. J. Photoch. Photobio. B. 117, 80–89 (2012)

    Article  CAS  Google Scholar 

  59. Gianferrara, T., Bratsos, I., Iengo, E., Milani, B., Oštrić, A., Spagnul, C., Zangrando, E., Alessio, E.: Synthetic strategies towards ruthenium–porphyrin conjugates for anticancer activity. Dalton Trans. 48, 10742–10756 (2009)

    Article  CAS  Google Scholar 

  60. Gianferrara, T., Bergamo, A., Bratsos, I., Milani, B., Spagnul, C., Sava, G., Alessio, E.: Ruthenium−porphyrin conjugates with cytotoxic and phototoxic antitumor activity. J. Med. Chem. 53(12), 4678–4690 (2010)

    Article  CAS  PubMed  Google Scholar 

  61. dos Santos, E.R., Pina, J., Venâncio, T., Serpa, C., Martinho, J.M.G., Carlos, R.M.: Photoinduced energy and electron-transfer reactions by polypyridine ruthenium(II) complexes containing a derivatized perylene diimide. J. Phys. Chem. C. 120(40), 22831–22843 (2016)

    Article  CAS  Google Scholar 

  62. de Campos, I.A.S., dos Santos, E.R., Sellani, T.A., Herbozo, C.C.A., Rodrigues, E.G., Roveda Jr., A.C., Pazin, W.M., Ito, A.S., Santana, V.T., Nascimento, O.R., Carlos, R.M.: Influence of the medium on the photochemical and photophysical properties of [Ru(phen) 2(pPDIp)] 2+. ChemPhotoChem. 2(8), 757–764 (2018)

    Article  CAS  Google Scholar 

  63. Bacellar, I., Tsubone, T., Pavani, C., Baptista, M.: Photodynamic efficiency: from molecular photochemistry to cell death. Int. J. Mol. Sci. 16(9), 20523–20559 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Redmond, R.W., Kochevar, I.E.: Spatially resolved cellular responses to singlet oxygen. Photochem. Photobiol. 82(5), 1178–1186 (2006)

    Article  CAS  PubMed  Google Scholar 

  65. Chen, T., Liu, Y., Zheng, W.-J., Liu, J., Wong, Y.-S.: Ruthenium polypyridyl complexes that induce mitochondria-mediated apoptosis in cancer cells. Inorg. Chem. 49(14), 6366–6368 (2010)

    Article  CAS  PubMed  Google Scholar 

  66. Xu, L., Zhang, P.-P., Fang, X.-Q., Liu, Y., Wang, J.-Q., Zhou, H.-Z., Chen, S.-T., Chao, H.: A ruthenium(II) complex containing a p-cresol group induces apoptosis in human cervical carcinoma cells through endoplasmic reticulum stress and reactive oxygen species production. J. Inorg. Biochem. 191, 126–134 (2018)

    Article  PubMed  CAS  Google Scholar 

  67. Zava, O., Zakeeruddin, S.M., Danelon, C., Vogel, H., Grätzel, M., Dyson, P.J.: A cytotoxic ruthenium tris(bipyridyl) complex that accumulates at plasma membranes. Chembiochem. 10(11), 1796–1800 (2009)

    Article  CAS  PubMed  Google Scholar 

  68. Dickerson, M., Sun, Y., Howerton, B., Glazer, E.C.: Modifying charge and hydrophilicity of simple Ru(II) polypyridyl complexes radically alters biological activities: old complexes, surprising new tricks. Inorg. Chem. 53(19), 10370–10377 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lv, W., Zhang, Z., Zhang, K.Y., Yang, H., Liu, S., Xu, A., Guo, S., Zhao, Q., Huang, W.: A mitochondria-targeted photosensitizer showing improved photodynamic therapy effects under hypoxia. Angew. Chem. Int. Ed. 55(34), 9947–9951 (2016)

    Article  CAS  Google Scholar 

  70. Kalinina, S., Breymayer, J., Reeß, K., Lilge, L., Mandel, A., Rück, A.: Correlation of intracellular oxygen and cell metabolism by simultaneous PLIM of phosphorescent TLD1433 and FLIM of NAD(P)H. J. Biophotonics. 11(10), e201800085–e201800035 (2018)

    Article  PubMed  CAS  Google Scholar 

  71. Huang, H., Yu, B., Zhang, P., Huang, J., Chen, Y., Gasser, G., Ji, L., Chao, H.: Highly charged ruthenium(II) polypyridyl complexes as lysosome-localized photosensitizers for two-photon photodynamic therapy. Angew. Chem. Int. Ed. 54(47), 14049–14052 (2015)

    Article  CAS  Google Scholar 

  72. Liu, J., Chen, Y., Li, G., Zhang, P., Jin, C., Zeng, L., Ji, L., Chao, H.: Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents. Biomaterials. 56(C), 140–153 (2015)

    Article  CAS  PubMed  Google Scholar 

  73. Chakrabortty, S., Agrawalla, B.K., Stumper, A., Vegi, N.M., Fischer, S., Reichardt, C., Kögler, M., Dietzek, B., Feuring-Buske, M., Buske, C., Rau, S., Weil, T.: Mitochondria targeted protein-ruthenium photosensitizer for efficient photodynamic applications. J. Am. Chem. Soc. 139(6), 2512–2519 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dolmans, D.E.J.G.J., Fukumura, D., Jain, R.K.: Photodynamic therapy for cancer. Nat. Rev. Cancer. 3, 380 (2003)

    Article  CAS  PubMed  Google Scholar 

  75. Gilkes, D.M., Semenza, G.L., Wirtz, D.: Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat. Rev. Cancer. 14, 430 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bednarski, P.J., Mackay, F.S., Sadler, P.J.: Photoactivatable platinum complexes. Anti Cancer Agents Med. Chem. 7(1), 75–93 (2007)

    Article  CAS  Google Scholar 

  77. Joshi, T., Pierroz, V., Mari, C., Gemperle, L., Ferrari, S., Gasser, G.: A bis(dipyridophenazine)(2-(2-pyridyl)pyrimidine-4-carboxylic acid)ruthenium(II) complex with anticancer action upon photodeprotection. Angew. Chem. Int. Ed. 53(11), 2960–2963 (2014)

    Article  CAS  Google Scholar 

  78. White, J.K., Schmehl, R.H., Turro, C.: An overview of photosubstitution reactions of Ru(II) imine complexes and their application in photobiology and photodynamic therapy. Inorg. Chim. Acta. 454, 7–20 (2017)

    Article  CAS  Google Scholar 

  79. Goldbach, R.E., Rodriguez-Garcia, I., van Lenthe, J.H., Siegler, M.A., Bonnet, S.: N-Acetylmethionine and biotin as photocleavable protective groups for ruthenium polypyridyl complexes. Chem. 17(36), 9924–9929 (2011)

    Article  CAS  Google Scholar 

  80. Zayat, L., Noval, M.G., Campi, J., Calero, C.I., Calvo, D.J., Etchenique, R.: A new inorganic photolabile protecting group for highly efficient visible light GABA uncaging. Chembiochem. 8(17), 2035–2038 (2007)

    Article  CAS  PubMed  Google Scholar 

  81. Howerton, B.S., Heidary, D.K., Glazer, E.C.: Strained ruthenium complexes are potent light-activated anticancer agents. J. Am. Chem. Soc. 134(20), 8324–8327 (2012)

    Article  CAS  PubMed  Google Scholar 

  82. Collin, J.-P., Jouvenot, D., Koizumi, M., Sauvage, J.-P.: Ru(phen)2(bis-thioether)2+ complexes: synthesis and photosubstitution reactions. Inorg. Chim. Acta. 360(3), 923–930 (2007)

    Article  CAS  Google Scholar 

  83. Garner, R.N., Gallucci, J.C., Dunbar, K.R., Turro, C.: [Ru(bpy)2(5-cyanouracil)2]2+ as a potential light-activated dual-action therapeutic agent. Inorg. Chem. 50(19), 9213–9215 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ragazzon, G., Bratsos, I., Alessio, E., Salassa, L., Habtemariam, A., McQuitty, R.J., Clarkson, G.J., Sadler, P.J.: Design of photoactivatable metallodrugs: selective and rapid light-induced ligand dissociation from half-sandwich [Ru([9]aneS3)(N–N′)(py)]2+ complexes. Inorg. Chim. Acta. 393(0), 230–238 (2012)

    Article  CAS  Google Scholar 

  85. McClure, B.A., Rack, J.J.: Isomerization in photochromic ruthenium sulfoxide complexes. Eur. J. Inorg. Chem. 2010(25), 3895–3904 (2010)

    Article  CAS  Google Scholar 

  86. Zayat, L., Salierno, M., Etchenique, R.: Ruthenium(II) Bipyridyl complexes as photolabile caging groups for amines. Inorg. Chem. 45(4), 1728–1731 (2006)

    Article  CAS  PubMed  Google Scholar 

  87. Sgambellone, M.A., David, A., Garner, R.N., Dunbar, K.R., Turro, C.: Cellular toxicity induced by the photorelease of a caged bioactive molecule: design of a potential dual-action Ru(II) complex. J. Am. Chem. Soc. 135(30), 11274–11282 (2013)

    Article  CAS  PubMed  Google Scholar 

  88. Li, A., Yadav, R., White, J.K., Herroon, M.K., Callahan, B.P., Podgorski, I., Turro, C., Scott, E.E., Kodanko, J.J.: Illuminating cytochrome P450 binding: Ru(ii)-caged inhibitors of CYP17A1. Chem. Commun. 53(26), 3673–3676 (2017)

    Article  CAS  Google Scholar 

  89. Hazel, C., Ghrayche, J.B., Wei, J., Renfrew, A.: Photolabile ruthenium(II)–purine complexes: phototoxicity, DNA binding, and light-triggered drug release. Eur. J. Inorg. Chem. 2017(12), 1679–1686 (2017)

    Article  CAS  Google Scholar 

  90. Karaoun, N., Renfrew, A.K.: A luminescent ruthenium(ii) complex for light-triggered drug release and live cell imaging. Chem. Commun. 51(74), 14038–14041 (2015)

    Article  CAS  Google Scholar 

  91. Albani, B.A., Peña, B., Leed, N.A., de Paula, N.A.B..G., Pavani, C., Baptista, M.S., Dunbar, K.R., Turro, C.: Marked improvement in photoinduced cell death by a new tris-heteroleptic complex with dual action: singlet oxygen sensitization and ligand dissociation. J. Am. Chem. Soc. 136(49), 17095–17101 (2014)

    Google Scholar 

  92. Laemmel, A.-C., Collin, J.-P., Sauvage, J.-P.: Efficient and selective photochemical labilization of a given bidentate ligand in mixed ruthenium(II) complexes of the Ru(phen)2L2+ and Ru(bipy)2L2+ family (L = sterically hindering chelate). Eur. J. Inorg. Chem. 1999(3), 383–386 (1999)

    Article  Google Scholar 

  93. Bonnet, S., Collin, J.P., Sauvage, J.P., Schofield, E.: Photochemical expulsion of the neutral monodentate ligand L in Ru(terpy*)(diimine)(L)(2+): a dramatic effect of the steric properties of the spectator diimine ligand. Inorg. Chem. 43(26), 8346–8354 (2004)

    Article  CAS  PubMed  Google Scholar 

  94. Collin, J.P., Sauvage, J.P.: Synthesis and study of mononuclear ruthenium(II) complexes of sterically hindering diimine chelates. Implications for the catalytic oxidation of water to molecular oxygen. Inorg. Chem. 25(2), 135–141 (1986)

    Article  CAS  Google Scholar 

  95. Baranoff, E., Collin, J.-P., Furusho, J., Furusho, Y., Laemmel, A.-C., Sauvage, J.-P.: Photochemical or thermal chelate exchange in the ruthenium coordination sphere of complexes of the Ru(phen)2L family (L = Diimine or Dinitrile ligands). Inorg. Chem. 41(5), 1215–1222 (2002)

    Article  CAS  PubMed  Google Scholar 

  96. Collin, J.-P., Jouvenot, D., Koizumi, M., Sauvage, J.-P.: A ruthenium(II)-complexed rotaxane whose ring incorporates a 6,6′-diphenyl-2,2′-bipyridine: synthesis and light-driven motions. Eur. J. Inorg. Chem. 2005(10), 1850–1855 (2005)

    Article  CAS  Google Scholar 

  97. Azar, D., Audi, H., Farhat, S., El Sibai, M., Abi-Habib, R., Khnayzer, R.S.: Phototoxicity of strained Ru(II) complexes: is it the metal complex or the dissociating ligand? Dalton Trans. 46(35), 11529–11532 (2017)

    Article  CAS  PubMed  Google Scholar 

  98. Cuello-Garibo, J.-A., Meijer, M.S., Bonnet, S.: To cage or to be caged? The cytotoxic species in ruthenium-based photoactivated chemotherapy is not always the metal. Chem. Commun. 53(50), 6768–6771 (2017)

    Article  CAS  Google Scholar 

  99. Kohler, L., Nease, L., Vo, P., Garofolo, J., Heidary, D.K., Thummel, R.P., Glazer, E.C.: Photochemical and photobiological activity of Ru(II) homoleptic and heteroleptic complexes containing methylated bipyridyl-type ligands. Inorg. Chem. 56(20), 12214–12223 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. van Rixel, V.H.S., Siewert, B., Hopkins, S.L., Askes, S.H.C., Busemann, A., Siegler, M.A., Bonnet, S.: Green light-induced apoptosis in cancer cells by a tetrapyridyl ruthenium prodrug offering two trans coordination sites. Chem. Sci. 7(8), 4922–4929 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Peña, B., David, A., Pavani, C., Baptista, M.S., Pellois, J.-P., Turro, C., Dunbar, K.R.: Cytotoxicity studies of cyclometallated ruthenium(II) compounds: new applications for ruthenium dyes. Organometallics. 33(5), 1100–1103 (2014)

    Article  CAS  Google Scholar 

  102. Palmer, A.M., Pena, B., Sears, R.B., Chen, O., El Ojaimi, M., Thummel, R.P., Dunbar, K.R., Turro, C.: Cytotoxicity of cyclometallated ruthenium complexes: the role of ligand exchange on the activity. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371(1995), 20120135–20120135 (2013)

    Article  CAS  Google Scholar 

  103. Wachter, E., Heidary, D.K., Howerton, B.S., Parkin, S., Glazer, E.C.: Light-activated ruthenium complexes photobind DNA and are cytotoxic in the photodynamic therapy window. Chem. Commun. 48(77), 9649–9651 (2012)

    Article  CAS  Google Scholar 

  104. Cuello-Garibo, J.-A., James, C.C., Siegler, M.A., Bonnet, S.: Ruthenium-based PACT compounds based on an N,S non-toxic ligand: a delicate balance between photoactivation and thermal stability. Chem. Squar. 1, 2–19 (2017)

    Article  Google Scholar 

  105. Lameijer, L.N., Ernst, D., Hopkins, S.L., Meijer, M.S., Askes, S.H.C., Le Dévédec, S.E., Bonnet, S.: A red light-activated ruthenium-caged NAMPT inhibitor remains phototoxic in hypoxic cancer cells. Angew. Chem. Int. Ed. 56(38), 11549–11553 (2017)

    Article  CAS  Google Scholar 

  106. Sainuddin, T., McCain, J., Pinto, M., Yin, H., Gibson, J., Hetu, M., McFarland, S.A.: Organometallic Ru(II) photosensitizers derived from π-expansive cyclometalating ligands: surprising theranostic PDT effects. Inorg. Chem. 55(1), 83–95 (2016)

    Article  CAS  PubMed  Google Scholar 

  107. Yin, H., Stephenson, M., Gibson, J., Sampson, E., Shi, G., Sainuddin, T., Monro, S., McFarland, S.A.: In vitro multiwavelength PDT with 3IL states: teaching old molecules new tricks. Inorg. Chem. 53(9), 4548–4559 (2014)

    Article  CAS  PubMed  Google Scholar 

  108. Hess, J., Huang, H., Kaiser, A., Pierroz, V., Blacque, O., Chao, H., Gasser, G.: Evaluation of the medicinal potential of two ruthenium(II) polypyridine complexes as one- and two-photon photodynamic therapy photosensitizers. Chem. Eur. J. 23(41), 9888–9896 (2017)

    Article  CAS  PubMed  Google Scholar 

  109. Lameijer, L.N., Hopkins, S.L., Brevé, T.G., Askes, S.H.C., Bonnet, S.: d- versus l-glucose conjugation: mitochondrial targeting of a light-activated dual-mode-of-action ruthenium-based anticancer prodrug. Chem. Eur. J. 22, 18484–18491 (2016)

    Article  CAS  PubMed  Google Scholar 

  110. Sainuddin, T., Pinto, M., Yin, H., Hetu, M., Colpitts, J., McFarland, S.A.: Strained ruthenium metal–organic dyads as photocisplatin agents with dual action. J. Inorg. Biochem. 158(C), 45–54 (2016)

    Article  CAS  PubMed  Google Scholar 

  111. Loftus, L.M., White, J.K., Albani, B.A., Kohler, L., Kodanko, J.J., Thummel, R.P., Dunbar, K.R., Turro, C.: New Ru II complex for dual activity: photoinduced ligand release and 1O 2 production. Chem. Eur. J. 22(11), 3704–3708 (2016)

    Article  CAS  PubMed  Google Scholar 

  112. Arenas, Y., Monro, S., Shi, G., Mandel, A., McFarland, S., Lilge, L.: Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers. Photodiagn. Photodyn. Ther. 10(4), 615–625 (2013)

    Article  CAS  Google Scholar 

  113. Broekgaarden, M., Weijer, R., van Gulik, T.M., Hamblin, M.R., Heger, M.: Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev. 34(4), 643–690 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sullivan, R., Pare, G.C., Frederiksen, L.J., Semenza, G.L., Graham, C.H.: Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. Mol. Cancer Ther. 7(7), 1961–1973 (2008)

    Article  CAS  PubMed  Google Scholar 

  115. Theodoropoulos, V.E., Lazaris, A.C., Kastriotis, I., Spiliadi, C., Theodoropoulos, G.E., Tsoukala, V., Patsouris, E., Sofras, F.: Evaluation of hypoxia-inducible factor 1alpha overexpression as a predictor of tumour recurrence and progression in superficial urothelial bladder carcinoma. BJU Int. 95(3), 425–431 (2005)

    Article  CAS  PubMed  Google Scholar 

  116. Hopkins, S.L., Siewert, B., Askes, S.H.C., Veldhuizen, P., Zwier, R., Heger, M., Bonnet, S.: An in vitro cell irradiation protocol for testing photopharmaceuticals and the effect of blue, green, and red light on human cancer cell lines. Photochem. Photobiol. Sci. 15(5), 644–653 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bashkatov, A.N., Genina, E.A., Kochubey, V.I., Tuchin, V.V.: Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D. Appl. Phys. 38(15), 2543–2555 (2005)

    Article  CAS  Google Scholar 

  118. Hemmer, E., Benayas, A., Légaré, F., Vetrone, F.: Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horizons. 1(3), 168–184 (2016)

    Article  CAS  PubMed  Google Scholar 

  119. Vogel, A., Venugopalan, V.: Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103(2), 577–644 (2003)

    Article  CAS  PubMed  Google Scholar 

  120. Woods, J.J., Cao, J., Lippert, A.R., Wilson, J.J.: Characterization and biological activity of a hydrogen sulfide-releasing red light-activated ruthenium(II) complex. J. Am. Chem. Soc. 140(39), 12383–12387 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sun, W., Wen, Y., Thiramanas, R., Chen, M., Han, J., Gong, N., Wagner, M., Jiang, S., Meijer, M.S., Bonnet, S., Butt, H.-J., Mailänder, V., Liang, X.-J., Wu, S.: Red-light-controlled release of drug–Ru complex conjugates from metallopolymer micelles for phototherapy in hypoxic tumor environments. Adv. Funct. Mater. 28(39), 1804227 (2018)

    Article  CAS  Google Scholar 

  122. Sun, W., Thiramanas, R., Slep, L.D., Zeng, X., Mailänder, V., Wu, S.: Photoactivation of anticancer Ru complexes in deep tissue: how deep can we go? Chem. Eur. J. 23(45), 10832–10837 (2017)

    Article  CAS  PubMed  Google Scholar 

  123. Al-Afyouni, M.H., Rohrabaugh, T.N., Al-Afyouni, K.F., Turro, C.: New Ru(ii) photocages operative with near-IR light: new platform for drug delivery in the PDT window. Chem. Sci. 9(32), 6711–6720 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Loftus, L.M., Al-Afyouni, K.F., Turro, C.: New RuII scaffold for photoinduced ligand release with red light in the photodynamic therapy (PDT) window. Chem. Eur. J. 24(45), 11550–11553 (2018)

    Article  CAS  PubMed  Google Scholar 

  125. Pawlicki, M., Collins, H.A., Denning, R.G., Anderson, H.L.: Two-photon absorption and the design of two-photon dyes. Angew. Chem. Int. Ed. 48(18), 3244–3266 (2009)

    Article  CAS  Google Scholar 

  126. Girardot, C., Cao, B., Mulatier, J.-C., Baldeck, P.L., Chauvin, J., Riehl, D., Delaire, J.A., Andraud, C., Lemercier, G.: Ruthenium(II) complexes for two-photon absorption-based optical power limiting. ChemPhysChem. 9(11), 1531–1535 (2008)

    Article  CAS  PubMed  Google Scholar 

  127. Zhou, Z., Liu, J., Rees, T.W., Wang, H., Li, X., Chao, H., Stang, P.J.: Heterometallic Ru–Pt metallacycle for two-photon photodynamic therapy. Proc. Natl. Acad. Sci. USA. 115(22), 5664–5669 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Askes, S.H.C., Bahreman, A., Bonnet, S.: Activation of a photodissociative ruthenium complex by triplet–triplet annihilation upconversion in liposomes. Angew. Chem. Int. Ed. 53(4), 1029–1033 (2014)

    Article  CAS  Google Scholar 

  129. Askes, S.H.C., Meijer, M.S., Bouwens, T., Landman, I., Bonnet, S.: Red light activation of Ru(II) polypyridyl prodrugs via triplet-triplet annihilation upconversion: feasibility in air and through meat. Molecules. 21(11), 1460 (2016)

    Article  PubMed Central  CAS  Google Scholar 

  130. Kim, J.-H., Kim, J.-H.: Encapsulated triplet–triplet annihilation-based upconversion in the aqueous phase for sub-band-gap semiconductor photocatalysis. J. Am. Chem. Soc. 134(42), 17478–17481 (2012)

    Article  CAS  PubMed  Google Scholar 

  131. Boyer, J.C., van Veggel, F.C.J.M.: Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale. 2(8), 1417–1419 (2010)

    Article  CAS  PubMed  Google Scholar 

  132. Askes, S.H.C., Pomp, W., Hopkins, S.L., Kros, A., Wu, S., Schmidt, T., Bonnet, S.: Imaging upconverting polymersomes in cancer cells: biocompatible antioxidants brighten triplet–triplet annihilation upconversion. Small. 12(40), 5579–5590 (2016)

    Article  CAS  PubMed  Google Scholar 

  133. Askes, S.H.C., Bonnet, S.: Solving the oxygen sensitivity of sensitized photon upconversion in life science applications. Nat. Rev. Chem. 2, 437–452 (2018)

    Article  Google Scholar 

  134. Ruggiero, E., Garino, C., Mareque-Rivas, J.C., Habtemariam, A., Salassa, L.: Upconverting nanoparticles prompt remote near-infrared photoactivation of Ru(II)-arene complexes. Chem. Eur. J. 22(8), 2801–2811 (2016)

    Article  CAS  PubMed  Google Scholar 

  135. Ruggiero, E., Habtemariam, A., Yate, L., Mareque Rivas, J., Salassa, L.: Near infrared photolysis of a Ru polypyridyl complex by upconverting nanoparticles. Chem. Commun. 50(14), 1715–1718 (2014)

    Article  CAS  Google Scholar 

  136. Ruggiero, E., Hernández-Gil, J., Mareque-Rivas, J.C., Salassa, L.: Near infrared activation of an anticancer Pt(IV) complex by Tm-doped upconversion nanoparticles. Chem. Commun. 51(11), 2091–2094 (2015)

    Article  CAS  Google Scholar 

  137. Perfahl, S., Natile, M.M., Mohamad, H.S., Helm, C.A., Schulzke, C., Natile, G., Bednarski, P.J.: Photoactivation of diiodido-Pt(IV) complexes coupled to upconverting nanoparticles. Mol. Pharm. 13(7), 2346–2362 (2016)

    Article  CAS  PubMed  Google Scholar 

  138. Bown, S.G., Rogowska, A.Z., Whitelaw, D.E., Lees, W.R., Lovat, L.B., Ripley, P., Jones, L., Wyld, P., Gillams, A., Hatfield, A.W.R.: Photodynamic therapy for cancer of the pancreas. Gut. 50(4), 549–557 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Karakullukcu, B., van Veen, R.L.P., Aans, J.B., Hamming-Vrieze, O., Navran, A., Teertstra, H.J., van den Boom, F., Niatsetski, Y., Sterenborg, H.J.C.M., Tan, I.B.: MR and CT based treatment planning for mTHPC mediated interstitial photodynamic therapy of head and neck cancer: description of the method. Lasers Surg. Med. 45, 517–523 (2013)

    PubMed  Google Scholar 

  140. Dupont, C., Mordon, S., Deleporte, P., Reyns, N., Vermandel, M.: A novel device for intraoperative photodynamic therapy dedicated to glioblastoma treatment. Futur. Oncol. 13(27), 2441–2454 (2017)

    Article  CAS  Google Scholar 

  141. PhD, S.M., Cochrane, C., Tylcz, J.B., Betrouni, N., Mortier, L., Koncar, V.: Light emitting fabric technologies for photodynamic therapy. Photodiagn. Photodyn. Ther. 12(1), 1–8 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mauricio S. Baptista or Sylvestre Bonnet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meijer, M.S., Carlos, R.M., Baptista, M.S., Bonnet, S. (2022). Photomedicine with Inorganic Complexes: A Bright Future. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_34

Download citation

Publish with us

Policies and ethics