Skip to main content

Hairy Roots as a Source for Phytoremediation

  • Chapter
  • First Online:
Strategies and Tools for Pollutant Mitigation

Abstract

“Phytoremediation,” application of green plants to process and regulate the waste materials in soil, water, and the air is an important part of the new field of ecological engineering. Phytoremediation has been addressed as among the promising and eco-friendly processes for the decontamination of several environmental pollutants. In recent years, in vitro plant cultures play an important role in the phytoremediation process. This chapter focuses on the development of hairy root clones by using Agrobacterium rhizogenes in various plant species and their application in the remediation process. It is well-known that enzymes that are expected to be necessitated in the detoxifying process of lethal compounds. In view of the ease of employing this in vitro culture method as a transgenic arena, and interdependent the huge progress in functional genomics studies, it is required to develop novel hairy root cultures that capable to express, provoke, and metabolize additional genes in a greater efficiently under in vitro and in vivo. The present chapter summarized the differences between how hairy roots are more helpful in converting toxic to nontoxic forms comparatively with normal roots. This chapter also reports the most up-to-date achievements of using hairy root cultures in the phytoremediation process. This information is essential for assessing the feasibility of a remediation process prior to its filed uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27(4):474–488

    Article  CAS  Google Scholar 

  • Agostini E, Coniglio MS, Milrad SR, Tigier HA, Giulietti AM (2003) Phytoremediation of 2, 4-dichlorophenol by Brassica napus hairy root cultures. Biotechnol Appl Biochem 37(2):139–144

    Article  CAS  Google Scholar 

  • Agostini E, Talano MA, González PS, Oller ALW, Medina MI (2013) Application of hairy roots for phytoremediation: what makes them an interesting tool for this purpose? Appl Microbiol Biotechnol 97(3):1017–1030

    Google Scholar 

  • Anees M, Qayyum A, Jamil M, Rehman FU, Abid M, Malik MS, Yunas M, Ullah K (2020) Role of halotolerant and chitinolytic bacteria in phytoremediation of saline soil using spinach plant. Int J Phytoremediation 22(6):653–661

    Article  CAS  Google Scholar 

  • Angelini VA, Agostini E, Medina MI, González PS (2014) Use of hairy roots extracts for 2, 4-DCP removal and toxicity evaluation by Lactuca sativa test. Environ Sci Pollut Res 21(4):2531–2539

    Article  CAS  Google Scholar 

  • Annarao S, Sidhu OP, Roy R, Tuli R, Khetrapal CL (2008) Lipid profiling of developing Jatropha curcas L. seeds using 1H NMR spectroscopy. Bioresour Technol 99(18):9032–9035

    Article  CAS  Google Scholar 

  • Arjmand M, Sandermann H Jr (1985) Metabolism of DDT and related compounds in cell suspension cultures of soybean (Glycine max L.) and wheat (Triticum aestivum L.). Pestic Biochem Physiol 23(3):389–397

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Betts KS (1998) Technology update: getting to the root phytoremediation. Environ Sci Technol 32(1):22A–22A

    Article  CAS  Google Scholar 

  • Bhadra R, Wayment DG, Hughes JB, Shanks JV (1999) Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environ Sci Technol 33(3):446–452

    Article  CAS  Google Scholar 

  • Bizani E, Fytianos K, Poulios I, Tsiridis V (2006) Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. J Hazard Mater 136(1):85–94

    Article  CAS  Google Scholar 

  • Boobalan S, Kamalanathan D (2020) Tailoring enhanced production of aervine in Aerva lanata (L.) Juss. Ex Schult by Agrobacterium rhizogenes-mediated hairy root cultures. Indus Crops Prod 155:112814

    Article  CAS  Google Scholar 

  • Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83(2):158–167

    Article  CAS  Google Scholar 

  • Boominathan R, Saha Chaudhury NM, Sahajwalla V, Pauline MD (2004) Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining. 86:243–250

    Google Scholar 

  • Chandra S (2012) Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 34(3):407–415

    Article  CAS  Google Scholar 

  • Chandra S, Chandra S (2011) Engineering secondary metabolite production in hairy roots. Phytochem Rev 10:371–395

    Article  CAS  Google Scholar 

  • Chen Z, Huang Z, Cheng Y, Pan D, Pan X, Yu M, Pan Z, Lin Z, Guan X, Wu Z (2012) Cr (VI) uptake mechanism of Bacillus cereus. Chemosphere 87(3):211–216

    Article  CAS  Google Scholar 

  • Coniglio MS, Busto VD, González PS, Medina MI, Milrad S, Agostini E (2008) Application of Brassica napus hairy root cultures for phenol removal from aqueous solutions. Chemosphere 72(7):1035–1042

    Article  CAS  Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085

    Article  CAS  Google Scholar 

  • De Araujo BS, Charlwood BV, Pletsch M (2002) Tolerance and metabolism of phenol and chloroderivatives by hairy root cultures of Daucus carota L. Environ Pollut 117(2):329–335

    Article  Google Scholar 

  • de Araujo BS, de Oliveira JO, Machado SS, Pletsch M (2004) Comparative studies of the peroxidases from hairy roots of Daucus carota, Ipomoea batatas and Solanum aviculare. Plant Sci 167(5):1151–1157

    Article  CAS  Google Scholar 

  • De Araujo BS, Dec J, Bollag JM, Pletsch M (2006) Uptake and transformation of phenol and chlorophenols by hairy root cultures of Daucus carota, Ipomoea batatas and Solanum aviculare. Chemosphere 63(4):642–651

    Article  CAS  Google Scholar 

  • Doran PM (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103(1):60–76

    Article  CAS  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179(2):318–333

    Article  CAS  Google Scholar 

  • Doumett S, Lamperi L, Checchini L, Azzarello E, Mugnai S, Mancuso S, Petruzzelli G, Del Bubba M (2008) Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents. Chemosphere 72(10):1481–1490

    Article  CAS  Google Scholar 

  • Eapen S, Singh S, D’souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25(5):442–451

    Article  CAS  Google Scholar 

  • Flocco CG, Giulietti AM (2007) In vitro hairy root cultures as a tool for phytoremediation research. In: Phytoremediation. Humana Press, pp 161–173

    Google Scholar 

  • Flocco CG, Alvarez MA, Guilietti AM (1998) Peroxidase production in vitro by Armoracia lapathifolia (horseradish)-transformed root cultures: effect of elicitation on level and profile of isoenzymes. Biotechnol Appl Biochem 28:33–38

    Google Scholar 

  • Forss J, Welander U (2011) Biodegradation of azo and anthraquinone dyes in continuous systems. Int Biodeterior Biodegradation 65(1):227–237

    Article  CAS  Google Scholar 

  • Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74(6):1175

    Article  CAS  Google Scholar 

  • Georgiev MI, Agostini E, Ludwig-Müller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30(10):528–537

    Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176(1):20–30

    Article  CAS  Google Scholar 

  • Ghada M, Najla AI, Sajad MH, Fida A, Eltohami MS, Abdurahman HN, Elhassan HE, Elsaman T (2017) Efficacy of some sudanese medicinal plants extracts to remove heavy metals from water. Aust J Basic Appl Sci 11(3):51–55

    CAS  Google Scholar 

  • Giri A, Lakshmi Narasu M (2000) Production of podophyllotoxin from Podophyllum hexandrum: a potential natural product for clinically useful anticancer drugs. Cytotechnology 34:17–26

    Google Scholar 

  • Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18(1):1–22

    Article  CAS  Google Scholar 

  • Golob V, Vinder A, Simonič M (2005) Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents. Dyes Pigments 67(2):93–97

    Article  CAS  Google Scholar 

  • Gonzalez PS, Capozucca CE, Tigier HA, Milrad SR, Agostini E (2006) Phytoremediation of phenol from wastewater, by peroxidases of tomato hairy root cultures. Enzym Microb Technol 39(4):647–653

    Article  CAS  Google Scholar 

  • González PS, Capozucca CE, Tigier HA, Milrad SR, Agostini E (2006) Phytoremediation of phenol from wastewater, by peroxidases of tomato hairy root cultures. Enzym Microb Technol 39(4):647–653

    Article  CAS  Google Scholar 

  • Gujarathi NP, Haney BJ, Park HJ, Wickramasinghe SR, Linden JC (2005) Hairy roots of Helianthus annuus: a model system to study phytoremediation of tetracycline and oxytetracycline. Biotechnol Prog 21(3):775–780

    Article  CAS  Google Scholar 

  • Gutierrez-Valdes N, Häkkinen ST, Lemasson C, Guillet M, Oksman-Caldentey KM, Ritala A, Cardon F (2020) Hairy root cultures—A versatile tool with multiple applications. Front Plant Sci 11

    Google Scholar 

  • Habibi P, De Sa MFG, Makhzoum A, Malik S, da Silva ALL, Hefferon K, Soccol CR (2017) Bioengineering hairy roots: phytoremediation, secondary metabolism, molecular pharming, plant-plant interactions and biofuels. In: Sustainable agriculture reviews. Springer, Cham, pp 213–251

    Chapter  Google Scholar 

  • Hay AG, Focht DD (1998) Cometabolism of 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene by Pseudomonas acidovorans M3GY grown on biphenyl. Appl Environ Microbiol 64(6):2141–2146

    Article  CAS  Google Scholar 

  • Huber C, Bartha B, Harpaintner R, Schröder P (2009) Metabolism of acetaminophen (paracetamol) in plants—two independent pathways result in the formation of a glutathione and a glucose conjugate. Environ Sci Pollut Res 16(2)

    Google Scholar 

  • Hughes JB, Shanks J, Vanderford M, Lauritzen J, Bhadra R (1996) Transformation of TNT by aquatic plants and plant tissue cultures. Environ Sci Technol 31(1):266–271

    Article  Google Scholar 

  • Ibañez S, Talano M, Ontañon O, Suman J, Medina MI, Macek T, Agostini E (2016) Transgenic plants and hairy roots: exploiting the potential of plant species to remediate contaminants. New Biotechnol 33(5):625–635

    Article  CAS  Google Scholar 

  • Ismail AM, Theodor PA (2012) The effect of heavy metals Zn and Ni on growth of in vitro hairy root cultures of Indian mustard Brassica juncea L. Int J Adv Biotechnol Res 3:688–697

    Google Scholar 

  • Jadhav SU, Ghodake GS, Telke AA, Tamboli DP, Govindwar SP (2009) Degradation and detoxification of disperse dye scarlet RR by Galactomyces geotrichum MTCC 1360. J Microbiol Biotechnol 19:409–415

    Article  CAS  Google Scholar 

  • Jha P, Jobby R, Kudale S, Modi N, Dhaneshwar A, Desai N (2013) Biodegradation of phenol using hairy roots of Helianthus annuus L. Int Biodeterior Biodegradation 77:106–113

    Article  CAS  Google Scholar 

  • Jha P, Modi N, Jobby R, Desai N (2014) Differential expression of antioxidant enzymes during degradation of azo dye reactive black 8 in hairy roots of L. Int J Phytoremediation 17(4):305–312

    Google Scholar 

  • Jha P, Modi N, Jobby R, Desai N (2015) Differential expression of antioxidant enzymes during degradation of azo dye reactive black 8 in hairy roots of Physalis minima L. Int J Phytoremediation 17(4):305–312

    Article  CAS  Google Scholar 

  • Jha P, Jobby R, Desai NS (2016) Remediation of textile azo dye acid red 114 by hairy roots of Ipomoea carnea Jacq. and assessment of degraded dye toxicity with human keratinocyte cell line. J Hazard Mater 311:158–167

    Article  CAS  Google Scholar 

  • Jha P, Sen R, Jobby R, Sachar S, Bhatkalkar S, Desai N (2020) Biotransformation of xenobiotics by hairy roots. Phytochemistry 176:112421

    Article  CAS  Google Scholar 

  • Joo DJ, Shin WS, Choi JH, Choi SJ, Kim MC, Han MH, Ha TW, Kim YH (2007) Decolorization of reactive dyes using inorganic coagulants and synthetic polymer. Dyes Pigments 73(1):59–64

    Article  CAS  Google Scholar 

  • Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plants Res 3(13):1222–1239

    CAS  Google Scholar 

  • Krings U, Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49:1–8. https://doi.org/10.1007/s002530051129

    Article  CAS  Google Scholar 

  • Kurashvili MV, Adamia GS, Amiranashvili LL, Ananiasvili TI, Varazi TG, Pruidze MV, Gordeziani MS, Khatisashvili GA (2016) Targeting of detoxification potential of microorganisms and plants for cleaning environment polluted by organochlorine pesticides. Annal Agrarian Sci 14(3):222–226

    Article  Google Scholar 

  • Lal R (2020) Genetic engineering of plants for crop improvement. CRC Press

    Google Scholar 

  • Largia MJV, Satish L, Johnsi R, Shilpha J, Ramesh M (2016) Analysis of propagation of Bacopa monnieri (L.) from hairy roots, elicitation and Bacoside A contents of Ri transformed plants. World J Microbiol Biotechnol 32(8)

    Google Scholar 

  • Lokhande VH, Kudale S, Nikalje G, Desai N, Suprasanna P (2015) Hairy root induction and phytoremediation of textile dye, reactive green 19A-HE4BD, in a halophyte, Sesuvium portulacastrum (L.) L. Biotechnol Rep 8:56–63

    Article  Google Scholar 

  • Mackova M, Macek T, Kucerova P, Burkhard J, Pazlarova J, Demnerova K (1997) Degradation of polychlorinated biphenyls by hairy root culture of Solanum nigrum. Biotechnol Lett 19(8):787–790

    Article  CAS  Google Scholar 

  • Maitani T, Kubota H, Sato K, Takeda M, Yoshihira K (1996) Induction of phytochelatin.(class III metal loth ionein) and incorporation of copper in transformed hairy roots of Rubia tinctorum exposed to cadmium. J Plant Physiol 147(6):743–748

    Article  CAS  Google Scholar 

  • Majumder A, Jha S (2012) Hairy roots: a promising tool for phytoremediation. In: Microorganisms in environmental management. Springer, Dordrecht, pp 607–629

    Chapter  Google Scholar 

  • Makhzoum AB, Sharma P, Bernards MA, Trémouillaux-Guiller J (2013) Hairy roots: an ideal platform for transgenic plant production and other promising applications. In: Phytochemicals, plant growth, and the environment. Springer, New York, pp 95–142

    Chapter  Google Scholar 

  • Malik S, Andrade SA, Mirjalili MH, Arroo RR, Bonfill M, Mazzafera P (2016) Biotechnological approaches for bioremediation: in vitro hairy root culture. In: Transgenesis and secondary metabolism, vol 1

    Google Scholar 

  • Mansour HB, Mosrati R, Ghedira K, Chekir-Ghedira L (2011) Decolorization of textile wastewater by Pseudomonas putida: toxicity assessment. Environ Eng Sci 28(7):489–495

    Article  CAS  Google Scholar 

  • Mehrotra S, Mishra S, Srivastava V (2020) Hairy roots biotechnology unzipped: a journey of reality and promises. In: Hairy root cultures based applications. Springer, Singapore, pp 1–10

    Google Scholar 

  • Moogouei R (2018) Use of terrestrial plants for phytoremediation of pollutants from solutions. Iran J Sci Technol Trans A: Sci 42(4):1753–1759

    Article  Google Scholar 

  • Moola AK, Diana RKB (2019) Elicitation as a means for enhanced plant secondary metabolites through hairy root system. J Adv Sci Res 10(3)

    Google Scholar 

  • Mukundan U, Hjortso MA (1990) Thiophene content in normal and transformed root cultures of tagetes erects: A comparison with Thiophene content in roots of intact plants. J Exp Bot 41:1497–1501

    Article  CAS  Google Scholar 

  • Nepovím A, Podlipná R, Soudek P, Schröder P, Vaněk T (2004) Effects of heavy metals and nitroaromatic compounds on horseradish glutathione S-transferase and peroxidase. Chemosphere 57(8):1007–1015

    Article  CAS  Google Scholar 

  • Nouri J, Mahvi AH, Babaei A, Ahmadpour E (2006) Regional pattern distribution of groundwater fluoride in the shush aquifer of Khuzestan County, Iran. Fluoride 39(4):321

    CAS  Google Scholar 

  • Oller ALW, Agostini E, Talano MA, Capozucca C, Milrad SR, Tigier HA, Medina MI (2005) Overexpression of a basic peroxidase in transgenic tomato (Lycopersicon esculentum mill. cv. Pera) hairy roots increases phytoremediation of phenol. Plant Sci 169(6):1102–1111

    Article  CAS  Google Scholar 

  • Ontanon OM, González PS, Ambrosio LF, Paisio CE, Agostini E (2014) Rhizoremediation of phenol and chromium by the synergistic combination of a native bacterial strain and Brassica napus hairy roots. Int Biodeterior Biodegradation 88:192–198

    Article  CAS  Google Scholar 

  • Paisio CE, Fernandez M, González PS, Talano MA, Medina MI, Agostini E (2018) Simultaneous phytoremediation of chromium and phenol by Lemna minuta Kunth: a promising biotechnological tool. Int J Environ Sci Technol 15(1):37–48

    Article  CAS  Google Scholar 

  • Patil P, Desai N, Govindwar S, Jadhav JP, Bapat V (2009) Degradation analysis of reactive red 198 by hairy roots of tagetes patula L.(Marigold). Planta 230(4):725–735

    Article  CAS  Google Scholar 

  • Paul R, Campanella B (2000) Use of Alfalfa (Medicago sativa L.) to stimulate biodegradation of anthracene in dredging sludges. In: Inter-COST workshop on bioremediation, COST Action, vol 831

    Google Scholar 

  • Perez-Palacios P (2015) Environmental Biotechnology, development of biotechnological strategies for the bioremediation of heavy metals. Spain: Doctoral thesis

    Google Scholar 

  • Perotti R, Paisio CE, Agostini E, Fernandez MI, González PS (2020) CR (VI) phytoremediation by hairy roots of Brassica napus: assessing efficiency, mechanisms involved, and post-removal toxicity. Environ Sci Pollut Res:1–10

    Google Scholar 

  • Pitta–Alvarez SI, Spollansky TC, Giulietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzym Microb Technol 26(2–4):252–258

    Article  Google Scholar 

  • Praveen N, Thiruvengadam M, Yang YS, Kim SH, Murthy HN, Chung IM (2014) Production of gymnemic acid from hairy root cultures of Gymnema sylvestre R. Br. as influenced by polyunsaturated fatty acids (PUFAs) and their antioxidant activity. Ind Crop Prod 54:54–61

    Article  CAS  Google Scholar 

  • Quensen JF, Mueller SA, Jain MK, Tiedje JM (1998) Reductive dechlorination of DDE to DDMU in marine sediment microcosms. Science 280(5364):722–724

    Article  CAS  Google Scholar 

  • Rency AS, Pandian S, Kasinathan R, Satish L, Swamy MK, Ramesh M (2019) Hairy root cultures as an alternative source for the production of high-value secondary metabolites. In: Natural bio-active compounds. Springer, Singapore, pp 237–264. https://doi.org/10.1007/978-981-13-7438-8_10

  • Russell K (2005) The use and effectiveness of phytoremediation to treat persistent organic pollutants. US Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation and Field Services Division

    Google Scholar 

  • Rylott EL, Budarina MV, Barker A, Lorenz A, Strand SE, Bruce NC (2011) Engineering plants for the phytoremediation of RDX in the presence of the co-contaminating explosive TNT. New Phytol 192(2):405–413

    Article  CAS  Google Scholar 

  • Satish L, Rency AS, Muthubharathi BC, Shamili S, Rameshkumar R, Swamy MK, Ramesh M (2019) Transgenic plant cell cultures: a promising approach for secondary metabolite production. In: Natural bio-active compounds. Springer, Singapore, pp 79–122

    Chapter  Google Scholar 

  • Scheel D, Sandermann H (1977) Metabolism of DDT and Kelthane in cell suspension cultures of parsley (Petroselinum hortense, Hoffm.) and soybean (Glycine max L.). Planta 133(3):315–320

    Article  CAS  Google Scholar 

  • Schröder P, Scheer CE, Diekmann F, Stampfl A (2007) How plants cope with foreign compounds. Translocation of xenobiotic glutathione conjugates in roots of barley (Hordeum vulgare) (9 pp). Environmental Science and Pollution Research-International 14(2):114–122

    Article  Google Scholar 

  • Shaban NS, Abdou KA, Hassan NEHY (2016) Impact of toxic heavy metals and pesticide residues in herbal products. Beni-Suef Univ J Basic Appl Sci 5(1):102–106

    Google Scholar 

  • Shi H, Wang Y, Tsang PE, Chan LA (2012) Alleviated affect of exogenous CaCl2 on the growth, antioxidative enzyme activities and cadmium absorption efficiency of Wedelia trilobata hairy roots under cadmium stress. Sheng wu gong cheng xue bao= Chinese J Biotechnol 28(6):747–762

    Google Scholar 

  • Shi M, Wang Y, Wang X, Deng C, Cao W, Hua Q, Kai G (2020) Simultaneous promotion of tanshinone and phenolic acid biosynthesis in Salvia miltiorrhiza hairy roots by overexpressing Arabidopsis MYC2. Ind Crop Prod 155:112826

    Article  CAS  Google Scholar 

  • Singh S, Melo JS, Eapen S, D’souza SF (2006) Phenol removal using Brassica juncea hairy roots: role of inherent peroxidase and H2O2. J Biotechnol 123(1):43–49

    Article  CAS  Google Scholar 

  • Soudek P, Petrová Š, Benešová D, Vaněk T (2011) Uranium uptake and stress responses of in vitro cultivated hairy root culture of Armoracia rusticana. Agrochimica 55(1):15–28

    CAS  Google Scholar 

  • Srikantan C, Suraishkumar GK, Srivastava S (2018) Effect of light on the kinetics and equilibrium of the textile dye (reactive red 120) adsorption by Helianthus annuus hairy roots. Bioresour Technol 257:84–91

    Article  CAS  Google Scholar 

  • Straczek A, Wannijn J, Van Hees M, Thijs H, Thiry Y (2009) Tolerance of hairy roots of carrots to U chronic exposure in a standardized in vitro device. Environ Exp Bot 65(1):82–89

    Article  CAS  Google Scholar 

  • Subroto, M.A., Priambodo, S. and Indrasti, N.S., 2007. Accumulation of zinc by hairy root cultures of Solanum nigrum

    Book  Google Scholar 

  • Sujatha G, Zdravković-Korać S, Ćalić D, Flamini G, Kumari BR (2013) High-efficiency Agrobacterium rhizogenes-mediated genetic transformation in Artemisia vulgaris: hairy root production and essential oil analysis. Ind Crop Prod 44:643–652

    Article  CAS  Google Scholar 

  • Suresh B, Sherkhane PD, Kale S, Eapen S, Ravishankar GA (2005) Uptake and degradation of DDT by hairy root cultures of Cichorium intybus and Brassica juncea. Chemosphere 61(9):1288–1292

    Article  CAS  Google Scholar 

  • Suza W, Harris RS, Lorence A (2008) Hairy roots: from high-value metabolite production to phytoremediation. Electron J Integr Biosci 3(1):57–65

    Google Scholar 

  • Talano MA, Oller ALW, González P, González SO, Agostini E (2014) Effects of arsenate on tobacco hairy root and seedling growth, and its removal. Vitro Cellular & Developmental Biology-Plant 50(2):217–225

    Article  CAS  Google Scholar 

  • Talano MA, Ibañez S, Sosa Alderete LG, Wevar Oller AL, Vezza ME, Medina MI, Agostini E (2020) Increasing knowledge about phytoremediation through a practical approach for undergraduate students. J Biol Educ:1–7

    Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Molecular, clinical and environmental toxicology. Springer, Basel, pp 133–164

    Chapter  Google Scholar 

  • Telke AA, Kagalkar AN, Jagtap UB, Desai NS, Bapat VA, Govindwar SP (2011) Biochemical characterization of laccase from hairy root culture of Brassica juncea L. and role of redox mediators to enhance its potential for the decolorization of textile dyes. Planta 234(6):1137–1149

    Article  CAS  Google Scholar 

  • U.S. GAO – DOD operational ranges: more reliable cleanup cost estimates and a proactive approach to identifying contamination are needed. [WWW Document], 2014. https://www.gao.gov/products/GAO-04-6014.28.20

  • Upadhyay, A.K., Singh, D.P., Singh, N.K., Pandey, V.C. and Rai, U.N., 2019. Sustainable phytoremediation strategies for river water rejuvenation . In Phytomanagement of polluted sites (pp. 301-311). Elsevier

    Google Scholar 

  • Vinterhalter B, Savić J, Platiša J, Raspor M, Ninković S, Mitić N, Vinterhalter D (2008) Nickel tolerance and hyperaccumulation in shoot cultures regenerated from hairy root cultures of Alyssum murale Waldst et Kit. Plant Cell Tissue Organ Cult 94(3):299–303

    Article  CAS  Google Scholar 

  • Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10(3):249–268

    Article  CAS  Google Scholar 

  • Yapoga S, Ossey YB, Kouame V (2013) Phytoremediation of zinc, cadmium, copper and chrome from industrial wastewater by eichhornia crassipes. Int J Conserv Sci 4(1)

    Google Scholar 

  • Zaharia C, Suteu D (2013) Coal fly ash as adsorptive material for treatment of a real textile effluent: operating parameters and treatment efficiency. Environ Sci Pollut Res 20(4):2226–2235

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moola, A.K. et al. (2021). Hairy Roots as a Source for Phytoremediation. In: Aravind, J., Kamaraj, M., Prashanthi Devi, M., Rajakumar, S. (eds) Strategies and Tools for Pollutant Mitigation. Springer, Cham. https://doi.org/10.1007/978-3-030-63575-6_2

Download citation

Publish with us

Policies and ethics