Skip to main content

Deep Leakage from Gradients

  • Chapter
  • First Online:
Federated Learning

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12500))

Abstract

Exchanging model updates is a widely used method in the modern federated learning system. For a long time, people believed that gradients are safe to share: i.e., the gradients are less informative than the training data. However, there is information hidden in the gradients. Moreover, it is even possible to reconstruct the private training data from the publicly shared gradients. This chapter discusses techniques that reveal information hidden in gradients and validate the effectiveness on common deep learning tasks. It is important to raise people’s awareness to rethink the gradient’s safety. Several possible defense strategies have also been discussed to prevent such privacy leakage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/google-research/bert.

References

  1. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., et al.: Communication-efficient learning of deep networks from decentralized data, arXiv preprint arXiv:1602.05629 (2016)

  2. Jochems, A., et al.: Developing and validating a survival prediction model for NSCLC patients through distributed learning across 3 countries. Int. J. Radiat. Oncol. Biol. Phys. 99(2), 344–352 (2017)

    Article  Google Scholar 

  3. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  4. Konečný, J., McMahan, H.B., Yu, F.X., Richtarik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. In: NIPS Workshop on Private Multi-Party Machine Learning (2016). https://arxiv.org/abs/1610.05492

  5. Bonawitz, K., et al.: Towards federated learning at scale: system design. CoRR, vol. abs/1902.01046 (2019). http://arxiv.org/abs/1902.01046

  6. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18 IEEE (2017)

    Google Scholar 

  7. Melis, L., Song, C., Cristofaro, E.D., Shmatikov, V.: Exploiting unintended feature leakage in collaborative learning. CoRR, vol. abs/1805.04049 (2018). http://arxiv.org/abs/1805.04049

  8. Yang, D., Zhang, D., Yu, Z., Yu, Z.: Fine-grained preference-aware location search leveraging crowdsourced digital footprints from LBSNs. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 479–488 (2013)

    Google Scholar 

  9. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. University of Massachusetts, Amherst, Technical Report 07-49, October 2007

    Google Scholar 

  10. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1322–1333. ACM (2015)

    Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  12. Geiping, J., Bauermeister, H., Dröge, H., Moeller, M.: Inverting gradients-how easy is it to break privacy in federated learning? arXiv preprint arXiv:2003.14053 (2020)

  13. Zhao, B., Mopuri, K.R., Bilen, H.: iDLG: improved deep leakage from gradients. arXiv preprint arXiv:2001.02610 (2020)

  14. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: Annual Conference on Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  15. LeCun, Y.: The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/

  16. Krizhevsky, A.: Learning multiple layers of features from tiny images. Citeseer, Technical report 2009

    Google Scholar 

  17. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR, vol. abs/1810.04805 (2018). http://arxiv.org/abs/1810.04805

  20. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  21. Wei, W., et al.: A framework for evaluating gradient leakage attacks in federated learning. arXiv preprint arXiv:2004.10397 (2020)

  22. Rossi, F., Gégout, C.: Geometrical initialization, parametrization and control of multilayer perceptrons: application to function approximation. In: Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN 1994), vol. 1, pp. 546–550. IEEE (1994)

    Google Scholar 

  23. Bonawitz, K., et al.: Practical secure aggregation for federated learning on user-held data. CoRR, vol. abs/1611.04482 (2016). http://arxiv.org/abs/1611.04482

  24. Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13(5), 1333–1345 (2018)

    Article  Google Scholar 

  25. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic computations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_15

    Chapter  Google Scholar 

  26. Armknecht, F.. et al.: A guide to fully homomorphic encryption, Cryptology ePrint Archive, Report 2015/1192 (2015). https://eprint.iacr.org/2015/1192

  27. Tagliavini, G., Mach, S., Rossi, D., Marongiu, A., Benini, L.: A transprecision floating-point platform for ultra-low power computing. CoRR, vol. abs/1711.10374 (2017). http://arxiv.org/abs/1711.10374

  28. Lin, Y., Han, S., Mao, H., Wang, Y., Dally, W.J.: Deep gradient compression: reducing the communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887 (2017)

  29. Tsuzuku, Y., Imachi, H., Akiba, T.: Variance-based gradient compression for efficient distributed deep learning. arXiv preprint arXiv:1802.06058 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligeng Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, L., Han, S. (2020). Deep Leakage from Gradients. In: Yang, Q., Fan, L., Yu, H. (eds) Federated Learning. Lecture Notes in Computer Science(), vol 12500. Springer, Cham. https://doi.org/10.1007/978-3-030-63076-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63076-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63075-1

  • Online ISBN: 978-3-030-63076-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics