Skip to main content

Compatible Certificateless and Identity-Based Cryptosystems for Heterogeneous IoT

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12472))

Abstract

Certificates ensure the authenticity of users’ public keys, however their overhead (e.g., certificate chains) might be too costly for some IoT systems like aerial drones. Certificate-free cryptosystems, like identity-based and certificateless systems, lift the burden of certificates and could be a suitable alternative for such IoTs. However, despite their merits, there is a research gap in achieving compatible identity-based and certificateless systems to allow users from different domains (identity-based or certificateless) to communicate seamlessly. Moreover, more efficient constructions can enable their adoption in resource-limited IoTs.

In this work, we propose new identity-based and certificateless cryptosystems that provide such compatibility and efficiency. This feature is beneficial for heterogeneous IoT settings (e.g., commercial aerial drones), where different levels of trust/control is assumed on the trusted third party. Our schemes are more communication efficient than their public key based counterparts, as they do not need certificate processing. Our experimental analysis on both commodity and embedded IoT devices show that, only with the cost of having a larger system public key, our cryptosystems are more computation and communication efficient than their certificate-free counterparts. We prove the security of our schemes (in the random oracle model) and open-source our cryptographic framework for public testing/adoption.

M. O. Ozmen—Work done in part when Muslum Ozgur Ozmen was at the University of South Florida.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/mavlink/mavlink.

  2. 2.

    https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011.

  3. 3.

    http://131002.net/blake/blake.pdf.

  4. 4.

    https://crypto.stanford.edu/pbc/.

References

  1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5_29

    Chapter  Google Scholar 

  2. Au, M.H., Mu, Y., Chen, J., Wong, D.S., Liu, J.K., Yang, G.: Malicious KGC attacks in certificateless cryptography. In: 2nd ACM Symposium on Information, Computer and Communications Security, pp. 302–311. ASIACCS (2007)

    Google Scholar 

  3. Baek, J., Safavi-Naini, R., Susilo, W.: Certificateless public key encryption without pairing. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 134–148. Springer, Heidelberg (2005). https://doi.org/10.1007/11556992_10

    Chapter  Google Scholar 

  4. Behnia, R., Ozmen, M.O., Yavuz, A.A.: ARIS: authentication for real-time IoT systems. In: IEEE International Conference on Communications (ICC), ICC, pp. 1855–1867. ACM, New York (2019)

    Google Scholar 

  5. Behnia, R., Ozmen, M.O., Yavuz, A.A., Rosulek, M.: TACHYON: fast signatures from compact knapsack. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, pp. 1855–1867. ACM, New York (2018)

    Google Scholar 

  6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM conference on Computer and Communications Security, CCS 1993, pp. 62–73. ACM, New York (1993)

    Google Scholar 

  7. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes. J. Cryptol. 22(1), 1–61 (2009). https://doi.org/10.1007/s00145-008-9028-8

    Article  MathSciNet  MATH  Google Scholar 

  8. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_14

    Chapter  Google Scholar 

  9. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  10. Boyen, X.: A tapestry of identity-based encryption: practical frameworks compared. IJACT 1(1), 3–21 (2008)

    Article  MathSciNet  Google Scholar 

  11. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet X. 509 public key infrastructure certificate and certificate revocation list (CRL) profile. RFC 5280, RFC Editor, May 2008

    Google Scholar 

  12. Costello, C., Longa, P.: Four\(\mathbb{Q}\): four-dimensional decompositions on a \(\mathbb{Q}\)-curve over the Mersenne prime. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 214–235. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_10

    Chapter  Google Scholar 

  13. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory IT-22, 644–654 (1976)

    Google Scholar 

  14. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

    Chapter  Google Scholar 

  15. Galindo, D., Garcia, F.D.: A Schnorr-like lightweight identity-based signature scheme. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 135–148. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-2_9

    Chapter  Google Scholar 

  16. Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_42

    Chapter  Google Scholar 

  17. Huang, X., Mu, Y., Susilo, W., Wong, D.S., Wu, W.: Certificateless signature revisited. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 308–322. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73458-1_23

    Chapter  Google Scholar 

  18. Karati, A., Islam, S.H., Biswas, G.: A pairing-free and provably secure certificateless signature scheme. Inf. Sci. 450, 378–391 (2018)

    Article  MathSciNet  Google Scholar 

  19. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_33

    Chapter  Google Scholar 

  20. Liu, Z., Longa, P., Pereira, G.C.C.F., Reparaz, O., Seo, H.: Four\(\mathbb{Q}\) on embedded devices with strong countermeasures against side-channel attacks. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 665–686. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_32

    Chapter  MATH  Google Scholar 

  21. Ozmen, M.O., Behnia, R., Yavuz, A.A.: IoD-crypt: a lightweight cryptographic framework for internet of drones. CoRR abs/1904.06829 (2019). http://arxiv.org/abs/1904.06829

  22. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_33

    Chapter  Google Scholar 

  23. Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast signing and verifying. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 144–153. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45450-0_11

    Chapter  MATH  Google Scholar 

  24. Schnorr, C.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991). https://doi.org/10.1007/BF00196725

    Article  MATH  Google Scholar 

  25. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  26. Shoup, V.: A proposal for an ISO standard for public key encryption. Cryptology ePrint Archive, Report 2001/112 (2001). https://eprint.iacr.org/2001/112

  27. Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: NanoECC: testing the limits of elliptic curve cryptography in sensor networks. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 305–320. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77690-1_19

    Chapter  Google Scholar 

  28. Tomida, J., Fujioka, A., Nagai, A., Suzuki, K.: Strongly secure identity-based key exchange with single pairing operation. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 484–503. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0_23

    Chapter  Google Scholar 

  29. Won, J., Seo, S., Bertino, E.: Certificateless cryptographic protocols for efficient drone-based smart city applications. IEEE Access 5, 3721–3749 (2017)

    Article  Google Scholar 

  30. Yang, G., Tan, C.H.: Strongly secure certificateless key exchange without pairing. In: Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security, pp. 71–79. ASIACCS, ACM, New York (2011)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Department of Energy Award DE-OE0000780 and NSF Award #1652389.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouzbeh Behnia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Behnia, R., Yavuz, A.A., Ozmen, M.O., Yuen, T.H. (2020). Compatible Certificateless and Identity-Based Cryptosystems for Heterogeneous IoT. In: Susilo, W., Deng, R.H., Guo, F., Li, Y., Intan, R. (eds) Information Security. ISC 2020. Lecture Notes in Computer Science(), vol 12472. Springer, Cham. https://doi.org/10.1007/978-3-030-62974-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62974-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62973-1

  • Online ISBN: 978-3-030-62974-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics