Skip to main content

Determination of Trace Amounts of Tc by Electrochemical Methods

  • Chapter
  • First Online:
Electrochemistry of Technetium

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 270 Accesses

Abstract

Today, technetium is continuously released into the natural environment as a result of human activity in the fields of the nuclear industry and the nuclear medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuzwida MA (1996) Anodic stripping voltammetry of technetium alkaline media. In: Third Arab conference on the peaceful uses of atomic energy. Damascus 9–13 Dec 1996, AAEA. https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/065/31065341.pdf. Accessed 15 May 2019

  • Astheimer L, Schwochau K (1967) Zur invers-polarographie des technetiums. J Electroanal Chem 14:240–241

    Article  CAS  Google Scholar 

  • Chatterjee S, Del Negro A, Edwards MK et al (2011) Luminescence-based spectroelectrochemical sensor for [Tc(dmpe)3]2+/+ (dmpe = 1,2-bis(dimethylphosphino)ethane) within a charge-selective polymer film. Anal Chem 83:1766–1772

    Article  CAS  Google Scholar 

  • Chotkowski M, Wrzosek B, Grden M (2018) Intermediate oxidation states of technetium in concentrated sulfuric acid solutions. J Electroanal Chem 814:83–90

    Article  CAS  Google Scholar 

  • Desmet K, Myttenaere K (1986) Technetium in the environment. Elsevier

    Google Scholar 

  • El-Reefy SA, Ruf H, Schrob K (1990) Catodic stripping voltammetry in the tethaphenylarsonium chloride/chloroform extract at a hanging mercury drop electrode. J Radioanal Nucl Chem 141(1):179–183

    Article  CAS  Google Scholar 

  • Friedrich M, Ruf H (1986) Assay of extremely low technetium concentration by adsorption strpping voltammetry at the HMDE after reaction with thiocyanate. J Electroanal Chem 198:261–268

    Article  CAS  Google Scholar 

  • German KE, Dorokhov AV, Kopytin AV et al (2005) Quaternary alkylammonium and alkylphosphonium pertechnetates: application to pertechnetate ion-selective electrodes. J Nucl Radiochem Sci 6(3):217–219

    Article  CAS  Google Scholar 

  • Guminski C, Galus Z (1986) Radioactive elements. In: Hirayama C, Galus Z, Guminski C (eds) Metals in mercury, IUPAC solubility data series, vol 25. Pergamon Press, p 421

    Google Scholar 

  • Herlem G, Angoue O, Gharbi T et al (2015) Electrochemistry of pertechnetate on ultramicroelectrode: a new quality control for radiopharmaceuticals manufactured at hospitals in nuclear medicine. Electrochem Comm 51:76–80

    Article  CAS  Google Scholar 

  • Jasim F, Magee RJ, Wilson CL (1960) Chemical analysis on the microgram scale VI. The ultramicrogravimetric determination of technetium and rhenium. Microchim Acta 5–6:721–728

    Article  Google Scholar 

  • Lewis JY, Zodda JP, Deutsch E et al (1983) Determination of pertechnetate by liquid chromatography with reductive electrochemical detection. Anal Chem 55:708–713

    Article  CAS  Google Scholar 

  • Lewis JY, Pinkerton TC, Deutsch E et al (1985) Stripping chronocoulometry for the determination of pertechnetate. Anal Chim Acta 167:335–342

    Article  CAS  Google Scholar 

  • Rimke H, Herrmann G, Mang M et al (1990) Principle and analytical applications of resonance ionization mass spectrometry. Microchim Acta III:223–230

    Google Scholar 

  • Ruf H (1988) Quantitative analytical assay of small amounts of technetium by stripping chronopotentiometry at a glassy carbon electrode. J Electroanal Chem 241:125–131

    Article  CAS  Google Scholar 

  • Shi K, Hou X, Roos P et al (2012) Determination of technetium-99 in environmental samples: a review. Anal Chim Acta 709:1–20

    Article  CAS  Google Scholar 

  • Takahashi Y (2017) Technetium. In: White WM (ed) Encyclopedia of geochemistry. Springer, p 1422

    Google Scholar 

  • Torres Llosa JM, Ruf H, Schorb K et al (1988a) Stripping voltammetric determination of traces of technetium with glassy carbon electrode coated with tri-n-octylphosphine oxide. Anal Chim Acta 211:317–323

    Article  CAS  Google Scholar 

  • Torres Llosa JM, Ruf H, Schorb K et al (1988b) Stripping voltammetry assay of trace technetium with a TOPO coated glassy carbon electrode. J Res Nation Bureau Stand 93(3):493–495

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Chotkowski .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chotkowski, M., CzerwiƄski, A. (2021). Determination of Trace Amounts of Tc by Electrochemical Methods. In: Electrochemistry of Technetium. Monographs in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-62863-5_6

Download citation

Publish with us

Policies and ethics