Skip to main content

Insulin-Like Growth Factor (IGF)

  • Reference work entry
  • First Online:
Endocrine Pathology

Part of the book series: Encyclopedia of Pathology ((EP))

  • 13 Accesses

Definition

Insulin-like growth factors (IGFs) are peptide hormones of the insulin superfamily. IGFs levels are regulated by the secretion of the growth hormone (GH) and own a trophic activity on target tissues. In tumors, including neuroendocrine neoplasms, the aberrant IGFs production has been suggested to regulate cancer development and progression.

Synonyms

Non-suppressible insulin-like activity (NSILA); Somatomedin; Sulfation factor

Features

IGFs are members of the insulin-related peptides (insulin superfamily), a category of small proteins with sequence and structure related to “Insulin” (Rinderknecht and Humbel 1978). Two IGFs circulating ligands are known, namely, IGF-1 and IGF-2, firstly identified in 1957 (Salmon and Daughaday 1957). IGF-1 and IGF-2, which share amino acid positions and have 50% amino acid homology to insulin, are members of a signaling system referred to as the IGF axis, involving their two specific cell-surface receptors IGF1R and IGF2R, seven IGF-binding...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Alexandraki, K. I., Philippou, A., Boutzios, G., Theohari, I., Koutsilieris, M., Delladetsima, I. K., et al. (2017). IGF-IEc expression is increased in secondary compared to primary foci in neuroendocrine neoplasms. Oncotarget, 8(45), 79003–79011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan, J., & Kulke, M. (2014). Targeting the mTOR signaling pathway in neuroendocrine tumors. Current Treatment Options in Oncology, 15(3), 365–379.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooke, D., Divall, S., & Radovick, S. (2019). Normal and aberrant growth. In S. Melmed, R. Koenig, C. Rosen, R. Auchus, & A. Goldfine (Eds.), Williams textbook of endocrinology (pp. 948–958). Amsterdam: Elsevier.

    Google Scholar 

  • Evers, B. M., Ishizuka, J., Townsend, C. M., Jr., & Thompson, J. C. (1994). The human carcinoid cell line, BON. A model system for the study of carcinoid tumors. Annals of the New York Academy of Sciences, 733, 393–406.

    Article  CAS  PubMed  Google Scholar 

  • Falletta, S., Partelli, S., Rubini, C., Nann, D., Doria, A., Marinoni, I., et al. (2016). mTOR inhibitors response and mTOR pathway in pancreatic neuroendocrine tumors. Endocrine-Related Cancer, 23(11), 883–891.

    Article  CAS  PubMed  Google Scholar 

  • Gajate, P., Alonso-Gordoa, T., Martínez-Sáez, O., Molina-Cerrillo, J., & Grande, E. (2018). Prognostic and predictive role of the PI3K-AKT-mTOR pathway in neuroendocrine neoplasms. Clinical & Translational Oncology, 20(5), 561–569.

    Article  CAS  Google Scholar 

  • Grimberg, A. (2003). Mechanisms by which IGF-I may promote cancer. Cancer Biology & Therapy, 2(6), 630–635.

    Article  CAS  Google Scholar 

  • Kato, Y., Murakami, Y., Sohmiya, M., & Nishiki, M. (2002). Regulation of human growth hormone secretion and its disorders. Internal Medicine, 41(1), 7–13.

    Article  CAS  PubMed  Google Scholar 

  • Kyriakopoulos, G., Mavroeidi, V., Chatzellis, E., Kaltsas, G. A., & Alexandraki, K. I. (2018). Histopathological, immunohistochemical, genetic and molecular markers of neuroendocrine neoplasms. Annals of Translational Medicine, 6(12), 252.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nilsson, O., Wängberg, B., Theodorsson, E., Skottner, A., & Ahlman, H. (1992). Presence of IGF-I in human midgut carcinoid tumours – an autocrine regulator of carcinoid tumour growth? International Journal of Cancer, 51(2), 195–203.

    Article  CAS  PubMed  Google Scholar 

  • Pusceddu, S., de Braud, F., Concas, L., Bregant, C., Leuzzi, L., Formisano, B., et al. (2014). Rationale and protocol of the MetNET-1 trial, a prospective, single center, phase II study to evaluate the activity and safety of everolimus in combination with octreotide LAR and metformin in patients with advanced pancreatic neuroendocrine tumors. Tumori, 100(6), e286–e289.

    PubMed  Google Scholar 

  • Rinderknecht, E., & Humbel, R. E. (1978). The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. The Journal of Biological Chemistry, 253(8), 2769–2776.

    Article  CAS  PubMed  Google Scholar 

  • Salmon, W. D., Jr., & Daughaday, W. H. (1957). A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. The Journal of Laboratory and Clinical Medicine, 49(6), 825–836.

    CAS  PubMed  Google Scholar 

  • Shanmugalingam, T., Bosco, C., Ridley, A. J., & Van Hemelrijck, M. (2016). Is there a role for IGF-1 in the development of second primary cancers? Cancer Medicine, 5(11), 3353–3367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeltzing, O., Liu, W., Reinmuth, N., Fan, F., Parikh, A. A., Bucana, C. D., et al. (2003). Regulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and angiogenesis by an insulin-like growth factor-I receptor autocrine loop in human pancreatic cancer. The American Journal of Pathology, 163(3), 1001–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton, J., & Lazarus, L. (1976). Growth hormone in exercise: Comparison of physiological and pharmacological stimuli. Journal of Applied Physiology, 41(4), 523–527.

    Article  CAS  PubMed  Google Scholar 

  • Wulbrand, U., Remmert, G., Zöfel, P., Wied, M., Arnold, R., & Fehmann, H. C. (2000). mRNA expression patterns of insulin-like growth factor system components in human neuroendocrine tumours. European Journal of Clinical Investigation, 30(8), 729–739.

    Article  CAS  PubMed  Google Scholar 

  • Younis, S., Schönke, M., Massart, J., Hjortebjerg, R., Sundström, E., Gustafson, U., et al. (2018). The ZBED6-IGF2 axis has a major effect on growth of skeletal muscle and internal organs in placental mammals. Proceedings of the National Academy of Sciences of the United States of America, 115(9), E2048–e2057.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedeo Sciarra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sciarra, A. (2022). Insulin-Like Growth Factor (IGF). In: La Rosa, S., Uccella, S. (eds) Endocrine Pathology. Encyclopedia of Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-62345-6_5143

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62345-6_5143

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62344-9

  • Online ISBN: 978-3-030-62345-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics