Skip to main content

Nuclear Medicine

  • Chapter
  • First Online:
Accelerator Technology

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 661 Accesses

Abstract

Nuclear medicine applies radiation for diagnostic and treatment purposes. X-ray based diagnostics are the working horse of numerous medical fields spanning from dentists to oncology. The contrast mechanisms of this method will be discussed from a physical and technological perspective. Developing this technology from 2 to 3D (tomography) only slightly changes its limits, but widely extends its costs and benefit. Here the external X-ray sources can be replaced by internal radionuclides, which follow metabolic processes, generating a completely new type of contrast. In medical treatment, also external and internal radiation sources are applied. Radiation therapy focusses on oncology applications. A main technological limit for the success of this therapy form lies in the correct application of radiation doses only to tumour tissue. Combining metabolic and diagnostic targeting methods with radiation therapy enables treating a larger range of cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • E. Bell, F. Grünwald, Radiojodtherapie: bei benignen und malignen Schilddrüsenerkrankungen (Springer, 1999). ISBN 978-3540659136

    Google Scholar 

  • J.C. Buchsbaum, M.W. McDonald, P.A. Johnstone, T. Hoene, M. Mendonca, C.-W. Cheng, I.J. Das, K.P. McMullen, M.R. Wolanski, Range modulation in proton therapy planning: a simple method for mitigating effects of increased relative biological effectiveness at the end-of-range of clinical proton beams. Radiat. Oncol. 9 (2014). Article number: 2

    Google Scholar 

  • S.R. Cherry, J.A. Sorenson, M.E. Phelps, Physics in Nuclear Medicine (Saunders, 2012)

    Google Scholar 

  • R.E. Curtis, J.D. Boice, M. Stovall, L. Bernstein, R.S. Greenberg, J.T. Flannery, A.G. Schwartz, P. Weyer, R.N. Hoover, Risk of Leukemia after chemotherapy and radiation treatment for breast cancer. New Engl. J. Med. 326, 1745–1751 (1992). https://doi.org/10.1056/NEJM199206253262605

  • W. Eichhorn, H. Tabler, R. Lippold, M. Lochmann, M. Schreckenberger, P. Bartenstein, Prognostic factors determining long-term survival in well-differentiated thyroid cancer: an analysis of four hundred eighty-four patients undergoing therapy and aftercare at the same institution. Thyroid 13(10) (2004). https://doi.org/10.1089/105072503322511355.

  • A.H. Elgazzar, Orthopedic Nuclear Medicine (Springer, Berlin, Heidelberg, 2004) https://doi.org/10.1007/978-3-642-18790-2

  • A.B. González, M. Mahesh, K. Kim, M. Bhargavan, R. Lewis, F. Mettler, C. Land, Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch. Intern. Med. 169(22), 2071–2077 (2009). https://doi.org/10.1001/archinternmed.2009.440

  • J.H. Hubbell, S.M. Seltzer, NIST Standard Reference Database 126 (1996). Abgerufen am 2019 von https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients

  • M.L. Iglesias, A. Schmidt, A.A. Ghuzlan, L. Lacroix, F.D. Vathaire, S. Chevillard, M. Schlumberger, Radiation exposure and thyroid cancer: a review. Arch. Endocrinol. Metab. 61(2) (2017). https://doi.org/10.1590/2359-3997000000257 .

  • A. Koning, et al., TENDL-2015: TALYS-Based Evaluated Nuclear Data Library. Von (2015). Abgerufen https://tendl.web.psi.ch/tendl_2015/tendl2015.html

  • P. Miller, N. Long, R. Vilar, A.D. Gee, Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew. Chem., 8998–9033 (2008). https://doi.org/10.1002/anie.200800222

  • National Institute of Standards and Technology, in NIST: Introduction of e-star, p-star, and a-star. Von (2019). Abgerufen https://physics.nist.gov/PhysRefData/Star/Text/intro.html

  • OECD Nuclear Energy Agency (NEA), in JANIS. Von (2017). Abgerufen https://www.oecd-nea.org/janis/

  • A. Rahmima, H. Zaidib, PET versus SPECT: strengths, limitations and challenges. Nucl. Med. Commun. 29, 193–207 (2008)

    Google Scholar 

  • X. Ren, E. Wang, A.D. Skitnevskaya, A.B. Trofimov, K. Gokhberg, A. Dorn, Experimental evidence for ultrafast intermolecular relaxation processes in hydrated biomolecules. Nat. Phys. 14, 1062–1066 (2018). https://doi.org/10.1038/s41567-018-0214-9

  • M. Rickhey, O. Koelbl, C. Eilles, L. Bogner, A biologically adapted dose-escalation approach demonstrated for 18F-FET-PET in brain tumors. Strahlenther. Onkol. 184, 536–542 (2008). https://doi.org/10.1007/s00066-008-1883-6.

  • P. Vaupel, L. Harrison, Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9(Suppl 5), 4–9 (2004)

    Google Scholar 

  • T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, E. Ziegler, X-ray phase imaging with a grating interferometer. Opt. Exp. 13(16), 6296–6304 (2005). https://doi.org/10.1364/OPEX.13.006296

  • D.R. White, J. Booz, R.V. Griffith, J.J. Spokas, I.J., Wilson, Report 44, tissue substitutes in radiation dosimetry and measurement. J. Int. Comm. Radiat. Units Meas. 23(1) (1989). https://doi.org/10.1093/jicru/os23.1.Report44

  • H.Q. Woodard, DR White, The composition of body tissues. Br. J. Radiol. 59(708), 1209–1218 (1986). https://doi.org/10.1259/0007-1285-59-708-1209

  • R. Zimmermann, Nuclear Medicine—Radioactivity for Diagnosis and Therapy (EDP Science, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sören Möller .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Möller, S. (2020). Nuclear Medicine. In: Accelerator Technology. Particle Acceleration and Detection. Springer, Cham. https://doi.org/10.1007/978-3-030-62308-1_6

Download citation

Publish with us

Policies and ethics