Skip to main content

Inventory Indicators in Life Cycle Assessment

  • Chapter
  • First Online:
Life Cycle Inventory Analysis

Abstract

This chapter presents the concept of inventory indicators, which are indicators assessed at the inventory level by aggregating inventory flows at the start of the impact pathway. Although the ISO 14040 standard prescribes that a life cycle assessment (LCA) should contain an assessment of environmental impacts, inventory indicators are frequently applied for assessing energy and water use, but sometimes also for assessing waste generation, land use, material use, and emissions. For energy use, the cumulative energy demand is probably the most common indicator, which considers all renewable and non-renewable primary energy. Other energy use inventory indicators consider only non-renewable, or fossil, energy, and some consider secondary rather than primary energy. For water use, common inventory indicators include water extraction (or withdrawal), water consumption, the blue water footprint, and the green water footprint. Contrary to midpoint and endpoint indicators, inventory indicators do not consider which potential impacts the aggregated elementary flows might have. Therefore, inventory indicators have the drawback of being simplified in terms of impact modeling compared to midpoint and endpoint indicators. However, inventory indicators also have benefits: they are easy to apply, easy to interpret, and can serve as proxy indicators for damage at the endpoint level. In particular, they can be used also in cases when midpoint and endpoint characterization factors are lacking. Because of these advantages, inventory indicators are foreseen to play a role in LCA also in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Antón A, Castells F, Montero JI (2007) Land use indicators in life cycle assessment. Case study: the environmental impact of Mediterranean greenhouses. J Clean Prod 15(5):432–438

    Article  Google Scholar 

  • Arvesen A, Hertwich EG (2015) More caution is needed when using life cycle assessment to determine energy return on investment (EROI). Energy Policy 76(0):1–6

    Article  Google Scholar 

  • Arvidsson R, Svanström M (2016) A framework for energy use indicators and their reporting in life cycle assessment. Integr Environ Assess Manag 12(3):429–436

    Article  Google Scholar 

  • Arvidsson R, Fransson K, Fröling M, Svanström M, Molander S (2012) Energy use indicators in energy and life cycle assessments of biofuels: review and recommendations. J Clean Prod 31:54–61

    Article  CAS  Google Scholar 

  • Arvidsson R, Janssen M, Svanström M, Johansson P, Sandén BA (2018) Energy use and climate change improvements of Li/S batteries based on life cycle assessment. J Power Sources 383:87–92

    Article  CAS  Google Scholar 

  • Bhandari KP, Collier JM, Ellingson RJ, Apul DS (2015) Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis. Renew Sust Energ Rev 47:133–141

    Article  Google Scholar 

  • Bösch ME, Hellweg S, Huijbregts MAJ, Frischknecht R (2006) Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. Int J Life Cycle Assess 12(3):181

    Article  CAS  Google Scholar 

  • Boulay A-M, Bulle C, Bayart J-B, Deschênes L, Margni M (2011) Regional characterization of freshwater use in LCA: modeling direct impacts on human health. Environ Sci Technol 45(20):8948–8957

    Article  CAS  Google Scholar 

  • Boulay A-M, Bare J, Benini L, Berger M, Lathuillière MJ, Manzardo A, Margni M, Motoshita M, Núñez M, Pastor AV, Ridoutt B, Oki T, Worbe S, Pfister S (2018) The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int J Life Cycle Assess 23(2):368–378

    Article  Google Scholar 

  • Davis J, Sonesson U (2008) Life cycle assessment of integrated food chains—a Swedish case study of two chicken meals. Int J Life Cycle Assess 13(7):574–584

    Article  Google Scholar 

  • de Souza SP, Pacca S, de Ávila MT, Borges JLB (2010) Greenhouse gas emissions and energy balance of palm oil biofuel. Renew Energy 35(11):2552–2561

    Article  CAS  Google Scholar 

  • EN 15804:2012+A1:2013 (2013) Sustainability of construction works - environmental product declarations – core rules for the product category of construction products

    Google Scholar 

  • Espinosa N, Hosel M, Angmo D, Krebs FC (2012) Solar cells with one-day energy payback for the factories of the future. Energy Environ Sci 5(1):5117–5132

    Article  CAS  Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91(1):1–21

    Article  Google Scholar 

  • Frischknecht R, Jungbluth N (2004) Implementation of life cycle impact assessment methods. Data v1.1. Swiss Centre for Life Cycle Inventories, Dübendorf

    Google Scholar 

  • Frischknecht R, Wyss F, Büsser Knöpfel S, Lützkendorf T, Balouktsi M (2015) Cumulative energy demand in LCA: the energy harvested approach. Int J Life Cycle Assess 20(7):957–969

    Article  CAS  Google Scholar 

  • Gerbens-Leenes W, Hoekstra AY, van der Meer TH (2009) The water footprint of bioenergy. Proc Natl Acad Sci 106(25):10219–10223

    Article  CAS  Google Scholar 

  • Giegrich J, Liebich A, Lauwigi C, Reinherdt J (2012) Indikatoren/Kennzahlen für den Rohstoffverbrauch im Rahmen der Nachhaltigkeitsdiskussion (Indicators/indices for raw material use in the context of the sustainability discussion). German Environmnet Agency, Dessau-Roßlau

    Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, van Zelm R (2013) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and endpoint level. Dutch Ministry of Housing, Spatial Planning and Environment (VROM), The Hague

    Google Scholar 

  • Hagman J, Nerentorp M, Arvidsson R, Molander S (2013) Do biofuels require more water than do fossil fuels? Life cycle-based assessment of jatropha oil production in rural Mozambique. J Clean Prod 53(0):176–185

    Article  CAS  Google Scholar 

  • Hauschild MZ, Huijbregts MAJ (2015) Life cycle impact assessment. In: Klöpffer W, Curran MA (eds) LCA compendium – the complete world of life cycle assessment. Springer, Dordrecht

    Google Scholar 

  • Heijungs R, Guinée J, Huppes G (1997) Impact categories for natural resources and land use – survey and analysis of existing and proposed methods in the context of environmental life cycle assessment. Center of Environmental Science (CML), Leiden

    Google Scholar 

  • Hischier R, Weidema B, Althaus H-J, Bauer C, Doka G, Dones R, Frischknecht R, Hellweg S, Humbert S, Jungbluth N, Köllner T, Loerincik Y, Margni M, Nemecek T (2010) Implementation of life cycle impact assessment methods, ecoinvent report No 3. Ecoinvent Centre, St Gallen

    Google Scholar 

  • Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2011) The water footprint assessment manual: setting the global standard. Earthscan, London

    Google Scholar 

  • Huijbregts MAJ, Rombouts LJA, Hellweg S, Frischknecht R, Hendriks AJ, Dvd M, Ragas AMJ, Reijnders L, Struijs J (2006) Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environ Sci Technol 40(3):641–648

    Article  CAS  Google Scholar 

  • Huijbregts MAJ, Hellweg S, Frischknecht R, Hendriks HWM, Hungerbühler K, Hendriks AJ (2010) Cumulative energy demand as predictor for the environmental burden of commodity production. Environ Sci Technol 44(6):2189–2196

    Article  CAS  Google Scholar 

  • Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira MDM, Hollander A, Zijp M, van Zelm R (2016) ReCiPe 2016 – a harmonized life cycle impact assessment method at midpoint and endpoint level. Report I: characterization. Dutch National Institute for Public Health and the Environment, Bilthoven

    Google Scholar 

  • Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zijp M, Hollander A, van Zelm R (2017) ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess 22(2):138–147

    Article  Google Scholar 

  • Humbert S, De Schryver A, Margni M, Jolliet O (2012) IMPACT 2002+. User Guide. Quantis

    Google Scholar 

  • ISO (2006) ISO 14040. Environmental Management - Life Cycle Assessment - Principles and framework. International Organisation for Standardization, Geneva

    Google Scholar 

  • Jönsson Å, Tillman AM, Svensson T (1997) Life cycle assessment of flooring materials: case study. Build Environ 32(3):245–255

    Article  Google Scholar 

  • Koellner T, de Baan L, Beck T, Brandão M, Civit B, Margni M, i Canals LM, Saad R, de Souza DM, Müller-Wenk RJTIJLCA (2013) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18(6):1188–1202

    Article  Google Scholar 

  • Lindfors L-G, Christianse K, Hoffman L, Virtanen Y, Juntilla V, Hanssen O-J, Rønning A, Ekvall T, Finnveden G (1995) Nordic guidelines on life-cycle assessment. Nordic Council of Ministers, Copenhagen

    Google Scholar 

  • Mattsson B, Cederberg C, Blix L (2000) Agricultural land use in life cycle assessment (LCA): case studies of three vegetable oil crops. J Clean Prod 8(4):283–292

    Article  Google Scholar 

  • Milà i Canals L, Bauer C, Depestele J, Dubreuil A, Knuchel RF, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B (2007) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12(1):5–15

    Article  Google Scholar 

  • Milà i Canals L, Chenoweth J, Chapagain A, Orr S, Antón A, Clift R (2009) Assessing freshwater use impacts in LCA: part I—inventory modelling and characterisation factors for the main impact pathways. Int J Life Cycle Assess 14(1):28–42

    Article  Google Scholar 

  • Nguyen TLT, Gheewala SH, Garivait S (2007) Full chain energy analysis of fuel ethanol from cassava in Thailand. Environ Sci Technol 41(11):4135–4142

    Article  CAS  Google Scholar 

  • Nordelöf A, Messagie M, Tillman A-M, Ljunggren Söderman M, Van Mierlo J (2014) Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—what can we learn from life cycle assessment? Int J Life Cycle Assess 19(11):1866–1890

    Article  CAS  Google Scholar 

  • Owens JW (2001) Water resources in life-cycle impact assessment: considerations in choosing category indicators. J Ind Ecol 5(2):37–54

    Article  Google Scholar 

  • Peters G, Wiedemann S, Rowley H, Tucker R (2010) Accounting for water use in Australian red meat production. Int J Life Cycle Assess 15(3):311–320

    Article  CAS  Google Scholar 

  • Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43(11):4098–4104

    Article  CAS  Google Scholar 

  • Pleanjai S, Gheewala SH (2009) Full chain energy analysis of biodiesel production from palm oil in Thailand. Appl Energy 86(Supplement 1):S209–S214

    Article  CAS  Google Scholar 

  • Prueksakorn K, Gheewala SH (2008) Full chain energy analysis of biodiesel from Jatropha curcas L. in Thailand. Environ Sci Technol 42(9):3388–3393

    Article  CAS  Google Scholar 

  • Ritthof M, Rohn H, Liedtke C (2002) Calculating MIPS. Resource productivity of products and services. Wuppertal Institute, Wuppertal

    Google Scholar 

  • Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, van de Meent D, Hauschild MZ (2008) USEtox-the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546

    Article  CAS  Google Scholar 

  • Salieri B, Turner DA, Nowack B, Hischier R (2018) Life cycle assessment of manufactured nanomaterials: where are we? NanoImpact 10:108–120

    Article  Google Scholar 

  • Schmidt-Bleek FB (1993) MIPS – a universal ecological measure? Fresenius Environ Bull 2(6):306–311

    CAS  Google Scholar 

  • Sonderegger T, Dewulf J, Fantke P, de Souza DM, Pfister S, Stoessel F, Verones F, Vieira M, Weidema B, Hellweg S (2017) Towards harmonizing natural resources as an area of protection in life cycle impact assessment. Int J Life Cycle Assess 22(12):1912–1927

    Article  Google Scholar 

  • Steinmann ZJN, Schipper AM, Hauck M, Giljum S, Wernet G, Huijbregts MAJ (2017) Resource footprints are good proxies of environmental damage. Environ Sci Technol 51(11):6360–6366

    Article  CAS  Google Scholar 

  • Tillman A-M, Baumann H, Eriksson E, Rydberg T (1991) Packaging and the environment. Life-cycle analyses of selected packaging materials. Quantification of environmental loadings. Swedish Packaging Commission, Gothenburg

    Google Scholar 

  • van Oers L, Guinée JB (2016) The abiotic depletion potential: background, updates, and future. Resources 5(1):1–12

    Google Scholar 

  • Wiesen K, Wirges M (2017) From cumulated energy demand to cumulated raw material demand: the material footprint as a sum parameter in life cycle assessment. Energy, Sustain Soc 7(1):13

    Article  Google Scholar 

  • Williams ED, Ayres RU, Heller M (2002) The 1.7 kilogram microchip: energy and material use in the production of semiconductor devices. Environ Sci Technol 36(24):5504–5510

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rickard Arvidsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arvidsson, R. (2021). Inventory Indicators in Life Cycle Assessment. In: Ciroth, A., Arvidsson, R. (eds) Life Cycle Inventory Analysis . LCA Compendium – The Complete World of Life Cycle Assessment. Springer, Cham. https://doi.org/10.1007/978-3-030-62270-1_8

Download citation

Publish with us

Policies and ethics