Skip to main content

An Overview of New Strategies Based on Functional Nanoscale Materials to the Treatment of Tuberculosis

  • Chapter
  • First Online:
Functional Properties of Advanced Engineering Materials and Biomolecules

Abstract

Tuberculosis (TB) is a serious infectious disease of chronic evolution caused by Mycobacterium tuberculosis (MTB). In general, TB control depends on many factors, among which a fast and accurate diagnosis is essential, which in turn makes it possible to carry out a complete treatment involving the proper administration of medications by patients with active disease, that is, to prevent the transmission and evolution of this disease. Despite efforts to TB control, only in 2018, about 1.5 million people died for causes attributed to TB. This likely is due to the appearance of multidrug-resistant strains to known drugs, as well as individuals with HIV/AIDS who are more susceptible to TB. Thus, in this perspective, it is fundamentally important to develop new therapeutic options for the treatment of TB. Hence, this chapter aims to identify new therapeutic alternatives available in the scientific literature based on the use of functional nanoscale materials as strategies to control the increase in bacterial resistance to drugs commonly used in the treatment of TB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McHenry, M.L., Williams, S.M., Stein, C.M.: Genetics and evolution of tuberculosis pathogenesis: new perspectives and approaches. Infect. Genet. Evol. 81, 104204 (2020)

    Article  CAS  Google Scholar 

  2. Li, J., Zhao, A., Tang, J., Wang, G., Shi, Y., Zhan, L., Qin, C.: Tuberculosis vaccine development: from classic to clinical candidates. Eur. J. Clin. Microbiol. Infect. Dis. (2020)

    Google Scholar 

  3. Santos, N.C. de S., Scodro, R.B. de L., Sampiron, E.G., Ieque, A.L., Carvalho, H.C. de, Santos, T. da S., Ghiraldi Lopes, L.D., Campanerut-Sá, P.A.Z., Siqueira, V.L.D., Caleffi-Ferracioli, K.R. et al.: Minimum Bactericidal Concentration Techniques in Mycobacterium tuberculosis : a systematic review. Microb. Drug Resist. (2020)

    Google Scholar 

  4. Nogueira, A., Facchinetti, V., Souza, M., Vasconcelos, T.: Universidade Federal Fluminense. Faculdade de Farmácia. Rio de Janeiro, R.; Fundação Oswaldo Cruz. Instituto de Tecnologia em Fármacos. Rio de Janeiro, R.; Fundação Oswaldo Cruz. Instituto de Tecnologia em Fármacos. Rio de Janeiro, R.; Universidade Federal Fluminense. Instituto de Química. Rio de Janeiro, R. Tuberculose: uma abordagem geral dos principais aspectos. 2012, 93, 3–9

    Google Scholar 

  5. De Souza, M.V.N., Vasconcelos, T.R.A.: Fármacos no combate à tuberculose: Passado, presente e futuro. Quim. Nova 28, 678–682 (2005)

    Article  Google Scholar 

  6. Silva, D.R., Mello, F.C. de Q., Kritski, A., Dalcolmo, M., Zumla, A., Migliori, G.B.: Tuberculosis series. J. Bras. Pneumol. 44, 71–72 (2018)

    Google Scholar 

  7. Wang, Y.N., Chi, C.Q., Cai, M., Lou, Z.Y., Tang, Y.Q., Zhi, X.Y., Li, W.J., Wu, X.L., Du, X.: Amycolicicoccus subflavus gen. nov., sp. nov., an actinomycete isolated from a saline soil contaminated by crude oil. Int. J. Syst. Evol. Microbiol. 60, 638–643 (2010)

    Google Scholar 

  8. Casal, M., Gutierrez, J., Vaquero, M.: Comparative evaluation of the mycobacteria growth indicator tube with the BACTEC 460 TB system and Lowenstein-Jensen medium for isolation of mycobacteria from clinical specimens. Int. J. Tuberc. Lung Dis. 1, 81–84 (1997)

    CAS  Google Scholar 

  9. Osório Ferri, A., Aguiar, B., Mörschbächer Wilhelm, C., Schmidt, D., Fussieger, F., Ulrich Picoli, S.: Diagnóstico da tuberculose: uma revisão. Rev. Lib. 15, 145–154 (2014)

    Google Scholar 

  10. Sekaggya-Wiltshire, C., Lamorde, M., Kiragga, A.N., Dooley, K.E., Kamya, M.R., Kambugu, A., Fehr, J., Manabe, Y.C., Castelnuovo, B.: The utility of pharmacokinetic studies for the evaluation of exposure-response relationships for standard dose anti-tuberculosis drugs. Tuberculosis 108, 77–82 (2018)

    Article  CAS  Google Scholar 

  11. Berthel, S.J., Cooper, C.B., Fotouhi, N.: Tuberculosis. Annu. Rep. Med. Chem. 52, 1–25 (2019)

    CAS  Google Scholar 

  12. Griffiths, G., Nyström, B., Sable, S.B., Khuller, G.K.: Nanobead-based interventions for the treatment and prevention of tuberculosis. Nat. Rev. Microbiol. 8, 827–834 (2010)

    Article  CAS  Google Scholar 

  13. ORGANIZATION, W.H. Global tuberculosis report 2019

    Google Scholar 

  14. Ministério da Saúde-BRASIL Secretaria de Vigilância em Saúde - Departamento de Vigilância, Prevenção e Controle das Infecções Sexualmente Transmissíveis, do HIV/Aids e das Hepatites Virais

    Google Scholar 

  15. Ministério da Saúde; Panorama da Tuberculose no Brasil: indicadores epidemiologicos e operacionais 92 (2014)

    Google Scholar 

  16. Silva, D.B. da, Costa, G.S. da, Rosa, L.F.B., Guilherme, M. dos S., Oliveira, S.A. de, Cavalcanti, R.L. de S.: Assistência Farmacêutica a Pacientes Com Tuberculose Pulmonar: Uma Revisão Integrativa. Rev. Presença 2, 83–106 (2017)

    Google Scholar 

  17. Cadena, A.M., Flynn, J.L., Fortune, S.M.: The importance of first impressions: early events in Mycobacterium tuberculosis infection influence outcome. MBio 7, e00342-e416 (2016)

    Article  CAS  Google Scholar 

  18. World Health Organization (WHO) Latent tuberculosis infection: updated and consolidated guidelines for programmatic management. Geneva

    Google Scholar 

  19. Dodd, C.E., Schlesinger, L.S.: New concepts in understanding latent tuberculosis. Curr. Opin. Infect. Dis. 30, 316–321 (2017)

    Article  Google Scholar 

  20. Murray, P.R., Rosenthal, K.S., Pfaller, M.A.: Microbiologia Médica. Elsevier, São Paulo, pp. 1038–1056 (2009)

    Google Scholar 

  21. Koch, A., Mizrahi, V.: Mycobacterium tuberculosis. Trends Microbiol. 26, 555–556 (2018)

    Article  CAS  Google Scholar 

  22. Yadav, J., Verma, S., Chaudhary, D., Jaiwal, P.K., Jaiwal, R.: Tuberculosis: current status, diagnosis, treatment and development of novel vaccines. Curr. Pharm. Biotechnol. 20, 446–458 (2019)

    Google Scholar 

  23. Ministério da Saúde-BRASIL Tuberculose: o que é, causas, sintomas, tratamento, diagnóstico e prevenção (2020)

    Google Scholar 

  24. Sehgal, V.N., Srivastava, G.: Fixed drug eruption (FDE): changing scenario of incriminating drugs. Int. J. Dermatol. 45, 897–908 (2006)

    Article  CAS  Google Scholar 

  25. Cailleaux-Cezar, M.: Diagnóstico e Tratamento da Tuberculose Latente Diagnosis and Treatment of Latent Tuberculosis. Pulmão RJ 21, 41–45 (2012)

    Google Scholar 

  26. Costa, R.R. da, Silva, M.R., Gonçalves, I.C.: Diagnóstico laboratorial da tuberculose : Revisão de literatura. Rev Med Minas Gerais 28, 197–206 (2018)

    Google Scholar 

  27. Steingart, K.R., Flores, L.L., Dendukuri, N., Schiller, I., Laal, S., Ramsay, A., Hopewell, P.C., Pai, M.: Commercial serological tests for the diagnosis of active pulmonary and extrapulmonary tuberculosis: an updated systematic review and meta-analysis. PLOS Med. 8, e1001062 (2011)

    Article  Google Scholar 

  28. Lima, T.M. de, Belotti, N.C.U., Nardi, S.M.T., Pedro, H. da S.P.: Teste rápido molecular GeneXpert MTB/RIF para diagnóstico da tuberculose. Rev. Pan-Amazônica Saúde 8, 65–76 (2017)

    Google Scholar 

  29. Lee, D.J., Kumarasamy, N., Resch, S.C., Sivaramakrishnan, G.N., Mayer, K.H., Tripathy, S., Paltiel, A.D., Freedberg, K.A., Reddy, K.P.: Rapid, point-of-care diagnosis of tuberculosis with novel Truenat assay: cost-effectiveness analysis for India’s public sector. PLoS ONE 14, e0218890 (2019)

    Article  CAS  Google Scholar 

  30. Ferraz, J.C., Melo, F.B.S., Albuquerque, M.F.P.M., Montenegro, S.M.L., Abath, F.G.C.: Immune factors and immunoregulation in tuberculosis. Brazilian J. Med. Biol. Res. 39, 1387–1397 (2006)

    Article  CAS  Google Scholar 

  31. Lu, L.L., Smith, M.T., Yu, K.K.Q., Luedemann, C., Suscovich, T.J., Grace, P.S., Cain, A., Yu, W.H., McKitrick, T.R., Lauffenburger, D., et al.: IFN-γ-independent immune markers of Mycobacterium tuberculosis exposure. Nat. Med. 25, 977–987 (2019)

    Article  CAS  Google Scholar 

  32. Iseman, M.D.: Tuberculosis therapy: past, present and future. Eur. Respir. J. 20, 87S LP-94s (2002)

    Google Scholar 

  33. Controlled trial of 2, 4, and 6 months of pyrazinamide in 6-month, three-times-weekly regimens for smear-positive pulmonary tuberculosis, including an assessment of a combined preparation of isoniazid, rifampin, and pyrazinamide: results at 30 months. Am. Rev. Respir. Dis. 143, 700–706 (1991)

    Google Scholar 

  34. Pereira, S.M., Dantas, O.M.S., Ximenes, R., Barreto, M.L.: BCG vaccine against tuberculosis: its protective effect and vaccination policies. Rev. Saude Publica 41, 1–7 (2007)

    Google Scholar 

  35. Stefanova, T.: Quality control and safety assessment of BCG vaccines in the post-genomic era. Biotechnol. Biotechnol. Equip. 28, 387–391 (2014)

    Article  CAS  Google Scholar 

  36. Daniel, T.M.: Leon Charles Albert Calmette and BCG vaccine. Int. J. Tuberc. Lung Dis. 9, 944–945 (2005)

    CAS  Google Scholar 

  37. Rios, A.C., Moutinho, C.G., Pinto, F.C., Del Fiol, F.S., Jozala, A., Chaud, M.V., Vila, M.M.D.C., Teixeira, J.A., Balcão, V.M.: Alternatives to overcoming bacterial resistances: State-of-the-art. Microbiol. Res. 191, 51–80 (2016)

    Article  CAS  Google Scholar 

  38. Rather, I.A., Kim, B.-C., Bajpai, V.K., Park, Y.-H.: Self-medication and antibiotic resistance: crisis, current challenges, and prevention. Saudi J. Biol. Sci. 24, 808–812 (2017)

    Article  Google Scholar 

  39. Stewart, P.S., William Costerton, J.: Antibiotic resistance of bacteria in biofilms. Lancet 358, 135–138 (2001)

    Article  CAS  Google Scholar 

  40. Gagneux, S., Long, C.D., Small, P.M., Van, T., Schoolnik, G.K., Bohannan, B.J.M.: The competitive cost of antibiotic resistance in Mycobacterium tuberculosis Science (80-. ) 312, 1944 LP–1946 (2006)

    Google Scholar 

  41. Sandgren, A., Strong, M., Muthukrishnan, P., Weiner, B.K., Church, G.M., Murray, M.B.: Tuberculosis drug resistance mutation database. PLOS Med. 6, e1000002 (2009)

    Article  CAS  Google Scholar 

  42. Khoder, R., Korri-Youssoufi, H.: E-DNA biosensors of M. tuberculosis based on nanostructured polypyrrole. Mater. Sci. Eng. C 108, 110371 (2020)

    Google Scholar 

  43. Sharma, R., Gupta, B., Singh, N., Acharya, J.R., Musilek, K., Kuca, K., Ghosh, K.: Development and structural modifications of cholinesterase reactivators against chemical warfare agents in last decade: a review. Mini-Reviews Med. Chem. 15, 58–72 (2014)

    Article  CAS  Google Scholar 

  44. Van Giau, V., An, S.S.A., Hulme, J.: Recent advances in the treatment of pathogenic infections using antibiotics and nano-drug delivery vehicles. Drug Des. Devel. Ther. 13, 327–343 (2019)

    Google Scholar 

  45. Xu, K., Liang, Z.C., Ding, X., Hu, H., Liu, S., Nurmik, M., Bi, S., Hu, F., Ji, Z., Ren, J. et al.: Nanomaterials in the prevention, diagnosis, and treatment of mycobacterium tuberculosis infections. Adv. Healthc. Mater. 7 (2018)

    Google Scholar 

  46. De Maio, F., Palmieri, V., De Spirito, M., Delogu, G., Papi, M.: Carbon nanomaterials: a new way against tuberculosis. Expert Rev. Med. Devices 16, 863–875 (2019)

    Article  CAS  Google Scholar 

  47. Volpedo, G., Costa, L., Ryan, N., Halsey, G., Satoskar, A., Oghumu, S.: Nanoparticulate drug delivery systems for the treatment of neglected tropical protozoan diseases. J. Venom. Anim. Toxins Incl. Trop. Dis. 25 (2019)

    Google Scholar 

  48. Yang, Y., Wang, S., Wang, Y., Wang, X., Wang, Q., Chen, M.: Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol. Adv. 32, 1301–1316 (2014)

    Article  CAS  Google Scholar 

  49. Gelperina, S., Kisich, K., Iseman, M.D., Heifets, L.: The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am. J. Respir. Crit. Care Med. 172, 1487–1490 (2005)

    Article  Google Scholar 

  50. Palmieri, V., Perini, G., De Spirito, M., Papi, M.: Graphene oxide touches blood: in vivo interactions of bio-coronated 2D materials. Nanoscale Horiz. 4, 273–290 (2019)

    Article  CAS  Google Scholar 

  51. Simon, J., Müller, L.K., Kokkinopoulou, M., Lieberwirth, I., Morsbach, S., Landfester, K., Mailänder, V.: Exploiting the biomolecular corona: pre-coating of nanoparticles enables controlled cellular interactions. Nanoscale 10, 10731–10739 (2018)

    Article  CAS  Google Scholar 

  52. Papi, M., Caracciolo, G.: Principal component analysis of personalized biomolecular corona data for early disease detection. Nano Today 21, 14–17 (2018)

    Article  CAS  Google Scholar 

  53. Weiss, G., Schaible, U.E.: Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev. 264, 182–203 (2015)

    Article  CAS  Google Scholar 

  54. Russell, D.G., Cardona, P.-J., Kim, M.-J., Allain, S., Altare, F.: Foamy macrophages and the progression of the human tuberculosis granuloma. Nat. Immunol. 10, 943–948 (2009)

    Article  CAS  Google Scholar 

  55. Greco, E., Quintiliani, G., Santucci, M.B., Serafino, A., Ciccaglione, A.R., Marcantonio, C., Papi, M., Maulucci, G., Delogu, G., Martino, A., et al.: Janus-faced liposomes enhance antimicrobial innate immune response in Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. U. S. A. 109, E1360–E1368 (2012)

    Article  CAS  Google Scholar 

  56. Dasari Shareena, T.P., McShan, D., Dasmahapatra, A.K., Tchounwou, P.B.: A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett. 10, 53 (2018)

    Google Scholar 

  57. Khanna, K., Khanna, S., Goel, B., Patel, A., Xavier, G.: Polymeric nano-particles for tumor targeting—a review. Int. J. Drug Dev. Res. (2017)

    Google Scholar 

  58. Sosnik, A., Carcaboso, A.M., Glisoni, R.J., Moretton, M.A., Chiappetta, D.A.: New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv. Drug Deliv. Rev. 62, 547–559 (2010)

    Article  CAS  Google Scholar 

  59. Andrade, F., Rafael, D., Videira, M., Ferreira, D., Sosnik, A., Sarmento, B.: Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv. Drug Deliv. Rev. 65, 1816–1827 (2013)

    Article  CAS  Google Scholar 

  60. Heo, D.N., Min, K.H., Choi, G.H., Kwon, I.K., Park, K., Lee, S.C.: Scale-up production of theranostic nanoparticles (Chap.24). In: Chen, X., Wong, S.B.T.-C.T. (eds.) pp. 457–470. Academic Press, Oxford (2014) ISBN 978-0-12-407722-5

    Google Scholar 

  61. Ahmad, Z., Sharma, S., Khuller, G.K.: Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int. J. Antimicrob. Agents 26, 298–303 (2005)

    Article  CAS  Google Scholar 

  62. Pandey, R., Khuller, G.K.: Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb). 85, 227–234 (2005)

    Article  CAS  Google Scholar 

  63. Pandey, R., Sharma, A., Zahoor, A., Sharma, S., Khuller, G.K., Prasad, B.: Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J. Antimicrob. Chemother. 52, 981–986 (2003)

    Article  CAS  Google Scholar 

  64. Pandey, R., Zahoor, A., Sharma, S., Khuller, G.K.: Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. Tuberculosis (Edinb). 83, 373–378 (2003)

    Article  Google Scholar 

  65. Andrade, F., Videira, M., Ferreira, D., Sarmento, B.: Nanocarriers for pulmonary administration of peptides and therapeutic proteins. Nanomedicine (Lond). 6, 123–141 (2011)

    Article  CAS  Google Scholar 

  66. Patton, J.S., Byron, P.R.: Inhaling medicines: delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 6, 67–74 (2007)

    Article  CAS  Google Scholar 

  67. Garcia-Contreras, L., Fiegel, J., Telko, M.J., Elbert, K., Hawi, A., Thomas, M., VerBerkmoes, J., Germishuizen, W.A., Fourie, P.B., Hickey, A.J. et al.: Inhaled large porous particles of capreomycin for treatment of tuberculosis in a guinea pig model. Antimicrob. Agents Chemother. 51, 2830 LP–2836 (2007)

    Google Scholar 

  68. Hwang, S.M., Kim, D.D., Chung, S.J., Shim, C.K.: Delivery of ofloxacin to the lung and alveolar macrophages via hyaluronan microspheres for the treatment of tuberculosis. J. Control. Release 129, 100–106 (2008)

    Article  CAS  Google Scholar 

  69. Moretton, M.A., Chiappetta, D.A., Andrade, F., das Neves, J., Ferreira, D., Sarmento, B., Sosnik, A.: Hydrolyzed galactomannan-modified nanoparticles and flower-like polymeric micelles for the active targeting of rifampicin to macrophages. J. Biomed. Nanotechnol. 9, 1076–1087 (2013)

    Google Scholar 

  70. Kalluru, R., Fenaroli, F., Westmoreland, D., Ulanova, L., Maleki, A., Roos, N., Paulsen Madsen, M., Koster, G., Egge-Jacobsen, W., Wilson, S. et al.: Poly(lactide-co-glycolide)-rifampicin nanoparticles efficiently clear Mycobacterium bovis BCG infection in macrophages and remain membrane-bound in phago-lysosomes. J. Cell Sci. 126, 3043 LP–3054 (2013)

    Google Scholar 

  71. Sharma, A., Sharma, N., Kumari, A., Lee, H.J., Kim, T.Y., Tripathi, K.M.: Nano-carbon based sensors for bacterial detection and discrimination in clinical diagnosis: A junction between material science and biology. Appl. Mater. Today 18, 100467 (2020)

    Article  Google Scholar 

  72. Maiti, D., Tong, X., Mou, X., Yang, K.: Carbon-based nanomaterials for biomedical applications: a recent study. Front. Pharmacol. 9, 1401 (2019)

    Article  CAS  Google Scholar 

  73. Al-Jumaili, A., Alancherry, S., Bazaka, K., Jacob, M.V.: Review on the antimicrobial properties of carbon nanostructures. Mater. (Basel, Switzerland) 10 (2017)

    Google Scholar 

  74. Palmieri, V., Bugli, F., Lauriola, M.C., Cacaci, M., Torelli, R., Ciasca, G., Conti, C., Sanguinetti, M., Papi, M., De Spirito, M.: Bacteria meet graphene: modulation of graphene oxide nanosheet interaction with human pathogens for effective antimicrobial therapy. ACS Biomater. Sci. Eng. 3, 619–627 (2017)

    Article  CAS  Google Scholar 

  75. Sudha, P.N., Sangeetha, K., Vijayalakshmi, K., Barhoum, A.: Nanomaterials history, classification, unique properties, production and market (Chap. 12). In: Barhoum, A., Makhlouf, A.S.H.B.T.-E.A. of N. A.N. (eds.) Micro and Nano Technologies, pp. 341–384. Elsevier (2018) ISBN 978-0-323-51254-1

    Google Scholar 

  76. Singh, R., Nawale, L.U., Arkile, M., Shedbalkar, U.U., Wadhwani, S.A., Sarkar, D., Chopade, B.A.: Chemical and biological metal nanoparticles as antimycobacterial agents: a comparative study. Int. J. Antimicrob. Agents 46, 183–188 (2015)

    Article  CAS  Google Scholar 

  77. Singh, R., Nawale, L., Arkile, M., Wadhwani, S., Shedbalkar, U., Chopade, S., Sarkar, D., Chopade, B.A.: Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents. Int. J. Nanomedicine 11, 1889–1897 (2016)

    CAS  Google Scholar 

  78. Pritchett, J.C., Naesens, L., Montoya, J.: Treating HHV-6 infections: the laboratory efficacy and clinical use of anti-HHV-6 agents. In: Flamand, L., Lautenschlager, I., Krueger, G.R.F. (eds.) Ablashi HHV-6B & HHV-7, 3rd ed., D.V.B.T.-H.H.H.-6A, pp. 311–331. Elsevier, Boston (2014) ISBN 978-0-444-62703-2

    Google Scholar 

  79. Salunke, G.R., Ghosh, S., Santosh Kumar, R.J., Khade, S., Vashisth, P., Kale, T., Chopade, S., Pruthi, V., Kundu, G., Bellare, J.R., et al.: Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int. J. Nanomed. 9, 2635–2653 (2014)

    Google Scholar 

  80. Ghosh, S., Jagtap, S., More, P., Shete, U.J., Maheshwari, N.O., Rao, S.J., Kitture, R., Kale, S., Bellare, J., Patil, S., et al.: Dioscorea bulbifera mediated synthesis of novel AucoreAgshell nanoparticles with potent antibiofilm and antileishmanial activity. J. Nanomater. 2015, 562938 (2015)

    Article  CAS  Google Scholar 

  81. Iravani, S.: Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638–2650 (2011)

    Article  CAS  Google Scholar 

  82. Gandhi, N.R., Nunn, P., Dheda, K., Schaaf, H.S., Zignol, M., van Soolingen, D., Jensen, P., Bayona, J.: Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375, 1830–1843 (2010)

    Article  Google Scholar 

  83. Singh, R., Shedbalkar, U.U., Wadhwani, S.A., Chopade, B.A.: Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl. Microbiol. Biotechnol. 99, 4579–4593 (2015)

    Article  CAS  Google Scholar 

  84. Warheit, D.B.: How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol. Sci. 101, 183–185 (2008)

    Article  CAS  Google Scholar 

  85. Dukhin, A.S., Ulberg, Z.R., Karamushka, V.I., Gruzina, T.G.: Peculiarities of live cells’ interaction with micro- and nanoparticles. Adv. Colloid Interface Sci. 159, 60–71 (2010)

    Article  CAS  Google Scholar 

  86. Oberdörster, G.: Nanotoxicology: in vitro-in vivo dosimetry. Environ. Health Perspect. 120, A13; author reply A13 (2012)

    Google Scholar 

  87. Oberdörster, G.: Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J. Intern. Med. 267, 89–105 (2010)

    Article  CAS  Google Scholar 

  88. Stone, V., Johnston, H., Schins, R.P.F.: Development of in vitro systems for nanotoxicology: methodological considerations. Crit. Rev. Toxicol. 39, 613–626 (2009)

    Article  CAS  Google Scholar 

  89. Åberg, C., Kim, J.A., Salvati, A., Dawson, K.A.: Theoretical framework for nanoparticle uptake and accumulation kinetics in dividing cell populations. EPL 101, 38007 (2013)

    Google Scholar 

  90. Maurer-Jones, M.A., Haynes, C.L.: Toward correlation in in vivo and in vitro nanotoxicology studies. J. Am. Soc. Law, Med. Ethics 40, 795–801 (2012)

    Google Scholar 

  91. Han, X., Corson, N., Wade-Mercer, P., Gelein, R., Jiang, J., Sahu, M., Biswas, P., Finkelstein, J.N., Elder, A., Oberdörster, G.: Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology 297, 1–9 (2012)

    Article  CAS  Google Scholar 

  92. Chen, X., Gambhir, S.S., Cheon, J.: Theranostic nanomedicine. Acc. Chem. Res. 44, 841 (2011)

    Article  CAS  Google Scholar 

  93. Zhang, L., Gu, F.X., Chan, J.M., Wang, A.Z., Langer, R.S., Farokhzad, O.C.: Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83, 761–769 (2008)

    Article  CAS  Google Scholar 

  94. Couvreur, P.: Nanoparticles in drug delivery: past, present and future. Adv. Drug Deliv. Rev. 65, 21–23 (2013)

    Article  CAS  Google Scholar 

  95. Rivera Gil, P., Oberdörster, G., Elder, A., Puntes, V., Parak, W.J.: Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano 4, 5527–5531 (2010)

    Article  CAS  Google Scholar 

  96. Edetsberger, M., Gaubitzer, E., Valic, E., Waigmann, E., Köhler, G.: Detection of nanometer-sized particles in living cells using modern fluorescence fluctuation methods. Biochem. Biophys. Res. Commun. 332, 109–116 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe A. La Porta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Assis, L.C., de Castro, A.A., Ramalho, T.C., Taft, C.A., La Porta, F.A. (2021). An Overview of New Strategies Based on Functional Nanoscale Materials to the Treatment of Tuberculosis. In: La Porta, F.A., Taft, C.A. (eds) Functional Properties of Advanced Engineering Materials and Biomolecules. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-62226-8_19

Download citation

Publish with us

Policies and ethics