Skip to main content

Abstract

Imaging section: MRI is at the cornerstone of the diagnosis of multiple sclerosis and allied demyelinating diseases. It is also critical for assessing response to disease-modifying therapy and quantifying lesion burden for clinical trials. The spectrum of immune-mediated demyelination has broadened with the recognition of neuromyelitis optica spectrum disorder, anti-myelin oligodendrocyte glycoprotein (MOG) antibody-related demyelination, and chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). These newer diseases have different imaging presentations from classic multiple sclerosis. A discussion of imaging mimics of demyelination including tumefactive lesions is included. DWI is sensitive to intramyelinic edema, hence providing a biomarker for active demyelination. Furthermore, DTI metrics have been used to assess white matter integrity beyond T2 hyperintensities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canellas AR, Gols AR, Izquierdo JR, Subirana MT, Gairin XM (2007) Idiopathic inflammatory-demyelinating diseases of the central nervous system. Neuroradiology 49(5):393–409

    Article  PubMed  Google Scholar 

  2. Poser CM, Brinar VV (2004) The nature of multiple sclerosis. Clin Neurol Neurosurg 106(3):159–171

    Article  PubMed  Google Scholar 

  3. Traboulsee AL, Li DK (2006) The role of MRI in the diagnosis of multiple sclerosis. Adv Neurol 98:125–146

    PubMed  Google Scholar 

  4. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17(2):162–173

    Article  PubMed  Google Scholar 

  5. Filippi M, Inglese M (2001) Overview of diffusion-weighted magnetic resonance studies in multiple sclerosis. J Neurol Sci 186(Suppl 1):S37–S43

    Article  PubMed  Google Scholar 

  6. Palmer S, Bradley WG, Chen DY, Patel S (1999) Subcallosal striations: early findings of multiple sclerosis on sagittal, thin-section, fast FLAIR MR images. Radiology 210(1):149–153

    Article  CAS  PubMed  Google Scholar 

  7. Lisanti CJ, Asbach P, Bradley WG Jr (2005) The ependymal “Dot-Dash” sign: an MR imaging finding of early multiple sclerosis. AJNR Am J Neuroradiol 26(8):2033–2036

    PubMed  PubMed Central  Google Scholar 

  8. van Walderveen MA, Lycklama ANGJ, Ader HJ, Jongen PJ, Polman CH, Castelijns JA et al (2001) Hypointense lesions on T1-weighted spin-echo magnetic resonance imaging: relation to clinical characteristics in subgroups of patients with multiple sclerosis. Arch Neurol 58(1):76–81

    PubMed  Google Scholar 

  9. Loevner LA, Grossman RI, McGowan JC, Ramer KN, Cohen JA (1995) Characterization of multiple sclerosis plaques with T1-weighted MR and quantitative magnetization transfer. AJNR Am J Neuroradiol 16(7):1473–1479

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sati P, Oh J, Constable RT, Evangelou N, Guttmann CR, Henry RG et al (2016) The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat Rev Neurol 12(12):714–722

    Article  PubMed  Google Scholar 

  11. Abou Zeid N, Pirko I, Erickson B, Weigand SD, Thomsen KM, Scheithauer B et al (2012) Diffusion-weighted imaging characteristics of biopsy-proven demyelinating brain lesions. Neurology 78(21):1655–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Finelli PF, Foxman EB (2014) The etiology of ring lesions on diffusion-weighted imaging. Neuroradiol J 27(3):280–287

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sener RN (2002) Atypical X-linked adrenoleukodystrophy: new MRI observations with FLAIR, magnetization transfer contrast, diffusion MRI, and proton spectroscopy. Magn Reson Imaging 20(2):215–219

    Article  CAS  PubMed  Google Scholar 

  14. Moritani T, Edema B (2009) In: Moritani TES, Westesson PL (eds) Diffusion-weighted MR imaging of the brain. Springer, Berlin, Heidelberg, pp 37–54

    Chapter  Google Scholar 

  15. Abdoli M, Chakraborty S, MacLean HJ, Freedman MS (2016) The evaluation of MRI diffusion values of active demyelinating lesions in multiple sclerosis. Mult Scler Relat Disord 10:97–102

    Article  PubMed  Google Scholar 

  16. Rovira A, Pericot I, Alonso J, Rio J, Grive E, Montalban X (2002) Serial diffusion-weighted MR imaging and proton MR spectroscopy of acute large demyelinating brain lesions: case report. AJNR Am J Neuroradiol 23(6):989–994

    PubMed  PubMed Central  Google Scholar 

  17. Roychowdhury S, Maldjian JA, Grossman RI (2000) Multiple sclerosis: comparison of trace apparent diffusion coefficients with MR enhancement pattern of lesions. AJNR Am J Neuroradiol 21(5):869–874

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tievsky AL, Ptak T, Farkas J (1999) Investigation of apparent diffusion coefficient and diffusion tensor anisotrophy in acute and chronic multiple sclerosis lesions. AJNR Am J Neuroradiol 20(8):1491–1499

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Horsfield MA, Larsson HB, Jones DK, Gass A (1998) Diffusion magnetic resonance imaging in multiple sclerosis. J Neurol Neurosurg Psychiatry 64(Suppl 1):S80–S84

    PubMed  Google Scholar 

  20. Castriota Scanderbeg A, Tomaiuolo F, Sabatini U, Nocentini U, Grasso MG, Caltagirone C (2000) Demyelinating plaques in relapsing-remitting and secondary-progressive multiple sclerosis: assessment with diffusion MR imaging. AJNR Am J Neuroradiol 21(5):862–868

    CAS  PubMed  Google Scholar 

  21. Zacharzewska-Gondek A, Pokryszko-Dragan A, Gondek TM, Koltowska A, Gruszka E, Budrewicz S et al (2019) Apparent diffusion coefficient measurements in normal appearing white matter may support the differential diagnosis between multiple sclerosis lesions and other white matter hyperintensities. J Neurol Sci 397:24–30

    Article  PubMed  Google Scholar 

  22. Ceccarelli A, Rocca MA, Falini A, Tortorella P, Pagani E, Rodegher M et al (2007) Normal-appearing white and grey matter damage in MS. J Neurol 254(4):513–518

    Article  PubMed  Google Scholar 

  23. Temel Ş, Kekliğkoğlu HD, Vural G, Deniz O, Ercan K (2013) Diffusion tensor magnetic resonance imaging in patients with multiple sclerosis and its relationship with disability. Neuroradiol J 26(1):3–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Poonawalla AH, Hasan KM, Gupta RK, Ahn CW, Nelson F, Wolinsky JS et al (2008) Diffusion-tensor MR imaging of cortical lesions in multiple sclerosis: initial findings. Radiology 246(3):880–886

    Article  PubMed  Google Scholar 

  25. Loevner LA, Grossman RI, Cohen JA, Lexa FJ, Kessler D, Kolson DL (1995) Microscopic disease in normal-appearing white matter on conventional MR images in patients with multiple sclerosis: assessment with magnetization-transfer measurements. Radiology 196(2):511–515

    Article  CAS  PubMed  Google Scholar 

  26. Miller DH, Chard DT, Ciccarelli O (2012) Clinically isolated syndromes. Lancet Neurol. 11(2):157–169

    Article  PubMed  Google Scholar 

  27. Schwenkenbecher P, Sarikidi A, Bonig L, Wurster U, Bronzlik P, Suhs KW et al (2017) Clinically isolated syndrome according to McDonald 2010: intrathecal IgG synthesis still predictive for conversion to multiple sclerosis. Int J Mol Sci 18(10):2061

    Article  PubMed Central  Google Scholar 

  28. Okuda DT, Mowry EM, Beheshtian A, Waubant E, Baranzini SE, Goodin DS et al (2009) Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology 72(9):800–805

    Article  CAS  PubMed  Google Scholar 

  29. Labiano-Fontcuberta A, Benito-Leon J (2016) Radiologically isolated syndrome: an update on a rare entity. Mult scler (Houndmills, Basingstoke, England) 22(12):1514–1521

    Article  Google Scholar 

  30. Lebrun C, Kantarci OH, Siva A, Pelletier D, Okuda DT (2018) Anomalies characteristic of central nervous system demyelination: radiologically isolated syndrome. Neurol Clin 36(1):59–68

    Article  PubMed  Google Scholar 

  31. Caracciolo JT, Murtagh RD, Rojiani AM, Murtagh FR (2001) Pathognomonic MR imaging findings in Balo concentric sclerosis. AJNR Am J Neuroradiol 22(2):292–293

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Capello E, Mancardi GL (2004) Marburg type and Balo’s concentric sclerosis: rare and acute variants of multiple sclerosis. Neurol Sci 25(Suppl 4):S361–S363

    Article  PubMed  Google Scholar 

  33. Karaarslan E, Altintas A, Senol U, Yeni N, Dincer A, Bayindir C et al (2001) Balo’s concentric sclerosis: clinical and radiologic features of five cases. AJNR Am J Neuroradiol 22(7):1362–1367

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hardy TA, Miller DH. Balo’s concentric sclerosis. Lancet Neurol. 2014;13(7):740–746

    Article  PubMed  Google Scholar 

  35. BALO J (1928) Encephalitis periaxialis concentrica. Arch Neurol Psychiatr 19(2):242–264

    Article  Google Scholar 

  36. Kavanagh EC, Heran MK, Fenton DM, Lapointe JS, Nugent RA, Graeb DA (2006) Diffusion-weighted imaging findings in Balo concentric sclerosis. Br J Radiol 79(943):e28–e31

    Article  CAS  PubMed  Google Scholar 

  37. Wiendl H, Weissert R, Herrlinger U, Krapf H, Kuker W (2005) Diffusion abnormality in Balo’s concentric sclerosis: clues for the pathogenesis. Eur Neurol 53(1):42–44

    Article  PubMed  Google Scholar 

  38. Ball T, Malik O, Roncaroli F, Quest RA, Aviv RI (2007) Apparent diffusion coefficient changes and lesion evolution in Balo’s type demyelination-correlation with histopathology. Clin Radiol 62(5):498–503

    Article  CAS  PubMed  Google Scholar 

  39. Miyamoto N, Kagohashi M, Nishioka K, Fujishima K, Kitada T, Tomita Y et al (2006) An autopsy case of Schilder’s variant of multiple sclerosis (Schilder’s disease). Eur Neurol 55(2):103–107

    Article  PubMed  Google Scholar 

  40. Obara S, Takeshima H, Awa R, Yonezawa H, Oyoshi T, Nagayama T et al (2003) Tumefactive myelinoclastic diffuse sclerosis—case report. Neurol Med Chir 43(11):563–566

    Article  Google Scholar 

  41. Jahn M, Steinberg H (2018) First description of Schilder’s disease: Paul Ferdinand Schilder and his struggle for the delimitation of a new entity. Nervenarzt 90(4):415–422

    Article  Google Scholar 

  42. Schilder P (1912) Zur Kenntnis der sogenannten diffusen Sklerose. (Über Encephalitis periaxialis diffusa.). Zeitschrift für die gesamte Neurologie und Psychiatrie 10(1):1

    Article  Google Scholar 

  43. Kurdi M, Ramsay D (2016) Balo’s concentric lesions with concurrent features of Schilder’s disease in relapsing multiple sclerosis: neuropathological findings. Autops Case Rep 6(4):21–26

    Article  PubMed  PubMed Central  Google Scholar 

  44. Masdeu JC, Quinto C, Olivera C, Tenner M, Leslie D, Visintainer P (2000) Open-ring imaging sign: highly specific for atypical brain demyelination. Neurology 54(7):1427–1433

    Article  CAS  PubMed  Google Scholar 

  45. Geraldes R, Ciccarelli O, Barkhof F, De Stefano N, Enzinger C, Filippi M et al (2018) The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nat Rev Neurol 14(4):199–213

    Article  PubMed  Google Scholar 

  46. Aliaga ES, Barkhof F (2014) MRI mimics of multiple sclerosis. Handb Clin Neurol 122:291–316

    Article  PubMed  Google Scholar 

  47. Scheltens P, Erkinjunti T, Leys D, Wahlund LO, Inzitari D, del Ser T et al (1998) White matter changes on CT and MRI: an overview of visual rating scales. European task force on age-related white matter changes. Eur Neurol 39(2):80–89

    Article  CAS  PubMed  Google Scholar 

  48. Falini A, Kesavadas C, Pontesilli S, Rovaris M, Scotti G (2001) Differential diagnosis of posterior fossa multiple sclerosis lesions—neuroradiological aspects. Neurol Sci 22(Suppl 2):S79–S83

    Article  PubMed  Google Scholar 

  49. Kleffner I, Dorr J, Ringelstein M, Gross CC, Bockenfeld Y, Schwindt W et al (2016) Diagnostic criteria for Susac syndrome. J Neurol Neurosurg Psychiatry 87(12):1287–1295

    Article  PubMed  Google Scholar 

  50. Weinshenker BG, Wingerchuk DM (2017) Neuromyelitis spectrum disorders. Mayo Clin Proc 92(4):663–679

    Article  PubMed  Google Scholar 

  51. Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T et al (2015) International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85(2):177–189

    Article  PubMed  PubMed Central  Google Scholar 

  52. Akaishi T, Nakashima I, Sato DK, Takahashi T, Fujihara K (2017) Neuromyelitis optica spectrum disorders. Neuroimaging Clin N Am 27(2):251–265

    Article  PubMed  Google Scholar 

  53. Popescu BF, Parisi JE, Cabrera-Gomez JA, Newell K, Mandler RN, Pittock SJ et al (2010) Absence of cortical demyelination in neuromyelitis optica. Neurology 75(23):2103–2109

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tatekawa H, Sakamoto S, Hori M, Kaichi Y, Kunimatsu A, Akazawa K et al (2018) Imaging differences between neuromyelitis optica spectrum disorders and multiple sclerosis: a multi-institutional study in Japan. AJNR Am J Neuroradiol 39(7):1239–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rueda Lopes FC, Doring T, Martins C, Cabral FC, Malfetano FR, Pereira VC et al (2012) The role of demyelination in neuromyelitis optica damage: diffusion-tensor MR imaging study. Radiology 263(1):235–242

    Article  PubMed  Google Scholar 

  56. Kimura MC, Doring TM, Rueda FC, Tukamoto G, Gasparetto EL (2014) In vivo assessment of white matter damage in neuromyelitis optica: a diffusion tensor and diffusion kurtosis MR imaging study. J Neurol Sci 345(1–2):172–175

    Article  PubMed  Google Scholar 

  57. Yu C, Lin F, Li K, Jiang T, Qin W, Sun H et al (2008) Pathogenesis of normal-appearing white matter damage in neuromyelitis optica: diffusion-tensor MR imaging. Radiology 246(1):222–228

    Article  PubMed  Google Scholar 

  58. Liu Y, Duan Y, Huang J, Ren Z, Ye J, Dong H et al (2015) Multimodal quantitative MR imaging of the thalamus in multiple sclerosis and neuromyelitis optica. Radiology 277(3):784–792

    Article  PubMed  Google Scholar 

  59. Wan H, He H, Zhang F, Sha Y, Tian G (2017) Diffusion-weighted imaging helps differentiate multiple sclerosis and neuromyelitis optica-related acute optic neuritis. J Magn Reson Imaging 45(6):1780–1785

    Article  PubMed  Google Scholar 

  60. Rivero RL, Oliveira EM, Bichuetti DB, Gabbai AA, Nogueira RG, Abdala N (2014) Diffusion tensor imaging of the cervical spinal cord of patients with Neuromyelitis Optica. Magn Reson Imaging 32(5):457–463

    Article  PubMed  Google Scholar 

  61. Ramanathan S, Dale RC, Brilot F (2016) Anti-MOG antibody: the history, clinical phenotype, and pathogenicity of a serum biomarker for demyelination. Autoimmun Rev 15(4):307–324

    Article  CAS  PubMed  Google Scholar 

  62. Jarius S, Ruprecht K, Kleiter I, Borisow N, Asgari N, Pitarokoili K et al (2016) MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. J Neuroinflammation 13(1):279

    Article  PubMed  PubMed Central  Google Scholar 

  63. Biotti D, Bonneville F, Tournaire E, Ayrignac X, Dalliere CC, Mahieu L et al (2017) Optic neuritis in patients with anti-MOG antibodies spectrum disorder: MRI and clinical features from a large multicentric cohort in France. J Neurol 264(10):2173–2175

    Article  PubMed  Google Scholar 

  64. Hardy TA, Chataway J (2013) Tumefactive demyelination: an approach to diagnosis and management. J Neurol Neurosurg Psychiatry 84(9):1047–1053

    Article  PubMed  Google Scholar 

  65. Lucchinetti CF, Gavrilova RH, Metz I, Parisi JE, Scheithauer BW, Weigand S et al (2008) Clinical and radiographic spectrum of pathologically confirmed tumefactive multiple sclerosis. Brain J Neurol 131(Pt 7):1759–1775

    Article  CAS  Google Scholar 

  66. Altintas A, Petek B, Isik N, Terzi M, Bolukbasi F, Tavsanli M et al (2012) Clinical and radiological characteristics of tumefactive demyelinating lesions: follow-up study. Mult Scler (Houndmills, Basingstoke, England) 18(10):1448–1453

    Article  CAS  Google Scholar 

  67. Kim DS, Na DG, Kim KH, Kim JH, Kim E, Yun BL et al (2009) Distinguishing tumefactive demyelinating lesions from glioma or central nervous system lymphoma: added value of unenhanced CT compared with conventional contrast-enhanced MR imaging. Radiology 251(2):467–475

    Article  PubMed  Google Scholar 

  68. Suh CH, Kim HS, Jung SC, Choi CG, Kim SJ (2018) MRI Findings in tumefactive demyelinating lesions: a systematic review and meta-analysis. AJNR Am J Neuroradiol 39(9):1643–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hiremath SB, Muraleedharan A, Kumar S, Nagesh C, Kesavadas C, Abraham M et al (2017) Combining diffusion tensor metrics and DSC perfusion imaging: can it improve the diagnostic accuracy in differentiating tumefactive demyelination from high-grade glioma? AJNR Am J Neuroradiol 38(4):685–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mabray MC, Cohen BA, Villanueva-Meyer JE, Valles FE, Barajas RF, Rubenstein JL et al (2015) Performance of apparent diffusion coefficient values and conventional MRI features in differentiating tumefactive demyelinating lesions from primary brain neoplasms. Am J Roentgenol 205(5):1075–1085

    Article  Google Scholar 

  71. Wen JB, Huang WY, Xu WX, Wu G, Geng DY, Yin B (2017) Differentiating primary central nervous system lymphomas from glioblastomas and inflammatory demyelinating pseudotumor using relative minimum apparent diffusion coefficients. J Comput Assist Tomogr 41(6):904–909

    Article  PubMed  Google Scholar 

  72. Toh CH, Wei KC, Ng SH, Wan YL, Castillo M, Lin CP (2012) Differentiation of tumefactive demyelinating lesions from high-grade gliomas with the use of diffusion tensor imaging. AJNR Am J Neuroradiol 33(5):846–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tenembaum S, Chitnis T, Ness J, Hahn JS (2007) Acute disseminated encephalomyelitis. Neurology 68(16 Suppl 2):S23–S36

    Article  PubMed  Google Scholar 

  74. Dale RC, de Sousa C, Chong WK, Cox TC, Harding B, Neville BG (2000) Acute disseminated encephalomyelitis, multiphasic disseminated encephalomyelitis and multiple sclerosis in children. Brain J Neurol 123(Pt 12):2407–2422

    Article  Google Scholar 

  75. Zuccoli G, Panigrahy A, Sreedher G, Bailey A, EJt L, La Colla L et al (2014) Vasogenic edema characterizes pediatric acute disseminated encephalomyelitis. Neuroradiology 56(8):679–684

    Article  PubMed  Google Scholar 

  76. Aung WY, Massoumzadeh P, Najmi S, Salter A, Heaps J, Benzinger TLS et al (2018) Diffusion tensor imaging as a biomarker to differentiate acute disseminated encephalomyelitis from multiple sclerosis at first demyelination. Pediatr Neurol 78:70–74

    Article  PubMed  Google Scholar 

  77. Yae Y, Kawano G, Yokochi T, Imagi T, Akita Y, Ohbu K et al (2018) Fulminant acute disseminated encephalomyelitis in children. Brain Dev 41(4):373–377

    Google Scholar 

  78. Gibbs WN, Kreidie MA, Kim RC, Hasso AN (2005) Acute hemorrhagic leukoencephalitis: neuroimaging features and neuropathologic diagnosis. J Comput Assist Tomogr 29(5):689–693

    Article  PubMed  Google Scholar 

  79. Mader I, Wolff M, Niemann G, Kuker W (2004) Acute haemorrhagic encephalomyelitis (AHEM): MRI findings. Neuropediatrics 35(2):143–146

    Article  CAS  PubMed  Google Scholar 

  80. Robinson CA, Adiele RC, Tham M, Lucchinetti CF, Popescu BF (2014) Early and widespread injury of astrocytes in the absence of demyelination in acute haemorrhagic leukoencephalitis. Acta Neuropathol Commun 2:52

    Article  PubMed  PubMed Central  Google Scholar 

  81. Postal M, Lapa AT, Reis F, Rittner L, Appenzeller S (2017) Magnetic resonance imaging in neuropsychiatric systemic lupus erythematosus: current state of the art and novel approaches. Lupus 26(5):517–521

    Article  CAS  PubMed  Google Scholar 

  82. Graham JW, Jan W (2003) MRI and the brain in systemic lupus erythematosus. Lupus 12(12):891–896

    Article  CAS  PubMed  Google Scholar 

  83. Raymond AA, Zariah AA, Samad SA, Chin CN, Kong NC (1996) Brain calcification in patients with cerebral lupus. Lupus 5(2):123–128

    Article  CAS  PubMed  Google Scholar 

  84. Kaichi Y, Kakeda S, Moriya J, Ohnari N, Saito K, Tanaka Y et al (2014) Brain MR findings in patients with systemic lupus erythematosus with and without antiphospholipid antibody syndrome. AJNR Am J Neuroradiol 35(1):100–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Moritani T, Shrier DA, Numaguchi Y, Takahashi C, Yano T, Nakai K et al (2001) Diffusion-weighted echo-planar MR imaging of CNS involvement in systemic lupus erythematosus. Acad Radiol 8(8):741–753

    Article  CAS  PubMed  Google Scholar 

  86. Costallat BL, Ferreira DM, Lapa AT, Rittner L, Costallat LTL, Appenzeller S (2018) Brain diffusion tensor MRI in systematic lupus erythematosus: a systematic review. Autoimmun Rev 17(1):36–43

    Article  PubMed  Google Scholar 

  87. Correa DG, Zimmermann N, Pereira DB, Doring TM, Netto TM, Ventura N et al (2016) Evaluation of white matter integrity in systemic lupus erythematosus by diffusion tensor magnetic resonance imaging: a study using tract-based spatial statistics. Neuroradiology 58(8):819–825

    Article  PubMed  Google Scholar 

  88. Schmidt-Wilcke T, Cagnoli P, Wang P, Schultz T, Lotz A, McCune WJ et al (2014) Diminished white matter integrity in patients with systemic lupus erythematosus. NeuroImage Clin 5:291–297

    Article  PubMed  PubMed Central  Google Scholar 

  89. Castillo P, Woodruff B, Caselli R, Vernino S, Lucchinetti C, Swanson J et al (2006) Steroid-responsive encephalopathy associated with autoimmune thyroiditis. Arch Neurol 63(2):197–202

    Article  PubMed  Google Scholar 

  90. Mahad DJ, Staugaitis S, Ruggieri P, Parisi J, Kleinschmidt-Demasters BK, Lassmann H et al (2005) Steroid-responsive encephalopathy associated with autoimmune thyroiditis and primary CNS demyelination. J Neurol Sci 228(1):3–5

    Article  PubMed  Google Scholar 

  91. Takahashi S, Mitamura R, Itoh Y, Suzuki N, Okuno A (1994) Hashimoto encephalopathy: etiologic considerations. Pediatr Neurol 11(4):328–331

    Article  CAS  PubMed  Google Scholar 

  92. Oide T, Tokuda T, Yazaki M, Watarai M, Mitsuhashi S, Kaneko K et al (2004) Anti-neuronal autoantibody in Hashimoto’s encephalopathy: neuropathological, immunohistochemical, and biochemical analysis of two patients. J Neurol Sci 217(1):7–12

    Article  CAS  PubMed  Google Scholar 

  93. Nolte KW, Unbehaun A, Sieker H, Kloss TM, Paulus W (2000) Hashimoto encephalopathy: a brainstem vasculitis? Neurology 54(3):769–770

    Article  CAS  PubMed  Google Scholar 

  94. Sanchez Contreras A, Rojas SA, Manosalva A, Mendez Patarroyo PA, Lorenzana P, Restrepo JF et al (2004) Hashimoto encephalopathy (autoimmune encephalitis). J Clin Rheumatol 10(6):339–343

    Article  PubMed  Google Scholar 

  95. Irani S, Lang B (2008) Autoantibody-mediated disorders of the central nervous system. Autoimmunity 41(1):55–65

    Article  CAS  PubMed  Google Scholar 

  96. Tamagno G, Federspil G, Murialdo G (2006) Clinical and diagnostic aspects of encephalopathy associated with autoimmune thyroid disease (or Hashimoto’s encephalopathy). Intern Emerg Med 1(1):15–23

    Article  PubMed  Google Scholar 

  97. Creutzfeldt CJ, Haberl RL (2005) Hashimoto encephalopathy: a do-not-miss in the differential diagnosis of dementia. J Neurol 252(10):1285–1287

    Article  PubMed  Google Scholar 

  98. Mancardi MM, Fazzini F, Rossi A, Gaggero R (2005) Hashimoto’s encephalopathy with selective involvement of the nucleus accumbens: a case report. Neuropediatrics 36(3):218–220

    Article  CAS  PubMed  Google Scholar 

  99. McCabe DJ, Burke T, Connolly S, Hutchinson M (2000) Amnesic syndrome with bilateral mesial temporal lobe involvement in Hashimoto’s encephalopathy. Neurology 54(3):737–739

    Article  CAS  PubMed  Google Scholar 

  100. Song YM, Seo DW, Chang GY (2004) MR findings in Hashimoto encephalopathy. AJNR Am J Neuroradiol 25(5):807–808

    PubMed  PubMed Central  Google Scholar 

  101. Dudesek A, Rimmele F, Tesar S, Kolbaske S, Rommer PS, Benecke R et al (2014) CLIPPERS: chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids. Review of an increasingly recognized entity within the spectrum of inflammatory central nervous system disorders. Clin Exp Immunol 175(3):385–396

    Google Scholar 

  102. Tobin WO, Guo Y, Krecke KN, Parisi JE, Lucchinetti CF, Pittock SJ et al (2017) Diagnostic criteria for chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain J Neurol 140(9):2415–2425

    Article  Google Scholar 

  103. Ferreira RM, Machado G, Souza AS, Lin K, Correa-Neto Y (2013) CLIPPERS-like MRI findings in a patient with multiple sclerosis. J Neurol Sci 327(1–2):61–62

    Article  CAS  PubMed  Google Scholar 

  104. Pittock SJ, Debruyne J, Krecke KN, Giannini C, van den Ameele J, De Herdt V et al (2010) Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain J Neurol 133(9):2626–2634

    Article  Google Scholar 

  105. Taieb G, Uro-Coste E, Clanet M, Lassmann H, Benouaich-Amiel A, Laurent C et al (2014) A central nervous system B-cell lymphoma arising two years after initial diagnosis of CLIPPERS. J Neurol Sci 344(1–2):224–226

    Article  PubMed  Google Scholar 

  106. De Graaff HJ, Wattjes MP, Rozemuller-Kwakkel AJ, Petzold A, Killestein J (2013) Fatal B-cell lymphoma following chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids. JAMA Neurol 70(7):915–918

    Article  PubMed  Google Scholar 

  107. Campochiaro C, Tomelleri A, Cavalli G, Berti A, Dagna L (2015) Erdheim-Chester disease. Eur J Intern Med 26(4):223–229

    Article  CAS  PubMed  Google Scholar 

  108. Moulis G, Sailler L, Bonneville F, Wagner T (2014) Imaging in Erdheim-Chester disease: classic features and new insights. Clin Exp Rheumatol 32(3):410–414

    CAS  PubMed  Google Scholar 

  109. Parks NE, Goyal G, Go RS, Mandrekar J, Tobin WO (2018) Neuroradiologic manifestations of Erdheim-Chester disease. Neurol Clin Pract 8(1):15–20

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chiapparini L, Cavalli G, Langella T, Venerando A, De Luca G, Raspante S et al (2018) Adult leukoencephalopathies with prominent infratentorial involvement can be caused by Erdheim-Chester disease. J Neurol 265(2):273–284

    Article  PubMed  Google Scholar 

  111. Marinelli JP, Peters PA, Vaglio A, Van Gompel JJ, Lane JI, Carlson ML (2019) Skull base manifestations of erdheim-chester disease: a case series and systematic review. Neurosurgery 80(S 01):S1–S244

    Google Scholar 

  112. Al-Samkari H, Berliner N (2018) Hemophagocytic lymphohistiocytosis. Annu Rev Pathol 13:27–49

    Article  CAS  PubMed  Google Scholar 

  113. Jovanovic A, Kuzmanovic M, Kravljanac R, Micic D, Jovic M, Gazikalovic S et al (2014) Central nervous system involvement in hemophagocytic lymphohistiocytosis: a single-center experience. Pediatr Neurol 50(3):233–237

    Article  PubMed  Google Scholar 

  114. Cai G, Wang Y, Liu X, Han Y, Wang Z (2017) Central nervous system involvement in adults with haemophagocytic lymphohistiocytosis: a single-center study. Ann Hematol 96(8):1279–1285

    Article  PubMed  Google Scholar 

  115. Rego I, Severino M, Micalizzi C, Faraci M, Pende D, Dufour C et al (2012) Neuroradiologic findings and follow-up with magnetic resonance imaging of the genetic forms of haemophagocytic lymphohistiocytosis with CNS involvement. Pediatr Blood Cancer 58(5):810–814

    Article  PubMed  Google Scholar 

  116. Deiva K, Mahlaoui N, Beaudonnet F, de Saint Basile G, Caridade G, Moshous D et al (2012) CNS involvement at the onset of primary hemophagocytic lymphohistiocytosis. Neurology 78(15):1150–1156

    Article  CAS  PubMed  Google Scholar 

  117. Mader I, Herrlinger U, Klose U, Schmidt F, Kuker W (2003) Progressive multifocal leukoencephalopathy: analysis of lesion development with diffusion-weighted MRI. Neuroradiology 45(10):717–721

    Article  CAS  PubMed  Google Scholar 

  118. Huisman TA, Boltshauser E, Martin E, Nadal D (2005) Diffusion tensor imaging in progressive multifocal leukoencephalopathy: early predictor for demyelination? AJNR Am J Neuroradiol 26(8):2153–2156

    PubMed  PubMed Central  Google Scholar 

  119. Ohta K, Obara K, Sakauchi M, Obara K, Takane H, Yogo Y (2001) Lesion extension detected by diffusion-weighted magnetic resonance imaging in progressive multifocal leukoencephalopathy. J Neurol 248(9):809–811

    Article  CAS  PubMed  Google Scholar 

  120. Filippini G, Brusaferri F, Sibley WA, Citterio A, Ciucci G, Midgard R et al (2000) Corticosteroids or ACTH for acute exacerbations in multiple sclerosis. Cochrane Database Syst Rev 4:CD001331

    Google Scholar 

  121. Lattanzi S, Cagnetti C, Danni M, Provinciali L, Silvestrini M (2017) Oral and intravenous steroids for multiple sclerosis relapse: a systematic review and meta-analysis. J Neurol 264(8):1697–1704

    Article  CAS  PubMed  Google Scholar 

  122. Weinshenker BG, O’Brien PC, Petterson TM, Noseworthy JH, Lucchinetti CF, Dodick DW et al (1999) A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Ann Neurol 46(6):878–886

    Article  CAS  PubMed  Google Scholar 

  123. Interferon (1993) beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. Neurology 43(4):655–661

    Article  Google Scholar 

  124. Paty DW, Li DK (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology 43(4):662–667

    Article  CAS  PubMed  Google Scholar 

  125. Kieseier BC (2011) The mechanism of action of interferon-beta in relapsing multiple sclerosis. CNS Drugs 25(6):491–502

    Article  CAS  PubMed  Google Scholar 

  126. Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM et al (1996) Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol 39(3):285–294

    Article  CAS  PubMed  Google Scholar 

  127. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis (1998) PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. Lancet 352(9139):1498–1504

    Google Scholar 

  128. Calabresi PA, Kieseier BC, Arnold DL, Balcer LJ, Boyko A, Pelletier J et al (2014) Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol 13(7):657–665

    Article  CAS  PubMed  Google Scholar 

  129. Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP et al (1995) Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45(7):1268–1276

    Article  CAS  PubMed  Google Scholar 

  130. Aharoni R (2013) The mechanism of action of glatiramer acetate in multiple sclerosis and beyond. Autoimmun Rev 12(5):543–553

    Article  CAS  PubMed  Google Scholar 

  131. Boster AL, Ford CC, Neudorfer O, Gilgun-Sherki Y (2015) Glatiramer acetate: long-term safety and efficacy in relapsing-remitting multiple sclerosis. Expert Rev Neurother 15(6):575–586

    Article  CAS  PubMed  Google Scholar 

  132. Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P et al (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362(5):387–401

    Article  CAS  PubMed  Google Scholar 

  133. Thomas K, Proschmann U, Ziemssen T (2017) Fingolimod hydrochloride for the treatment of relapsing remitting multiple sclerosis. Expert Opin Pharmacother 18(15):1649–1660

    Article  CAS  PubMed  Google Scholar 

  134. Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M et al (2012) Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 367(12):1087–1097

    Article  CAS  PubMed  Google Scholar 

  135. Dubey D, Kieseier BC, Hartung HP, Hemmer B, Warnke C, Menge T et al (2015) Dimethyl fumarate in relapsing-remitting multiple sclerosis: rationale, mechanisms of action, pharmacokinetics, efficacy and safety. Expert Rev Neurother 15(4):339–346

    Article  CAS  PubMed  Google Scholar 

  136. O’Connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP et al (2011) Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med 365(14):1293–1303

    Article  PubMed  Google Scholar 

  137. Confavreux C, O’Connor P, Comi G, Freedman MS, Miller AE, Olsson TP et al (2014) Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 13(3):247–256

    Article  CAS  PubMed  Google Scholar 

  138. Comi G, Freedman MS, Kappos L, Olsson TP, Miller AE, Wolinsky JS et al (2016) Pooled safety and tolerability data from four placebo-controlled teriflunomide studies and extensions. Mult Scler Relat Disord 5:97–104

    Article  PubMed  Google Scholar 

  139. Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354(9):899–910

    Article  CAS  PubMed  Google Scholar 

  140. Delbue S, Comar M, Ferrante P (2017) Natalizumab treatment of multiple sclerosis: new insights. Immunotherapy 9(2):157–171

    Article  CAS  PubMed  Google Scholar 

  141. Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B et al (2017) Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med 376(3):221–234

    Article  CAS  PubMed  Google Scholar 

  142. Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G et al (2017) Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med 376(3):209–220

    Article  CAS  PubMed  Google Scholar 

  143. Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP et al (2012) Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 380(9856):1819–1828

    Article  CAS  PubMed  Google Scholar 

  144. Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ et al (2012) Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 380(9856):1829–1839

    Article  CAS  PubMed  Google Scholar 

  145. Havrdova E, Arnold DL, Cohen JA, Hartung HP, Fox EJ, Giovannoni G et al (2017) Alemtuzumab CARE-MS I 5-year follow-up: durable efficacy in the absence of continuous MS therapy. Neurology 89(11):1107–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Coles AJ, Cohen JA, Fox EJ, Giovannoni G, Hartung HP, Havrdova E et al (2017) Alemtuzumab CARE-MS II 5-year follow-up: efficacy and safety findings. Neurology 89(11):1117–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cox AL, Thompson SA, Jones JL, Robertson VH, Hale G, Waldmann H et al (2005) Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. Eur J Immunol 35(11):3332–3342

    Article  CAS  PubMed  Google Scholar 

  148. Goodin DS, Bates D (2009) Treatment of early multiple sclerosis: the value of treatment initiation after a first clinical episode. Mult Scler 15(10):1175–1182

    Article  CAS  PubMed  Google Scholar 

  149. Montalban X, Gold R, Thompson AJ, Otero-Romero S, Amato MP, Chandraratna D et al (2018) ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis. Mult Scler 24(2):96–120

    Article  PubMed  Google Scholar 

  150. University of California SFMSET, Cree BA, Gourraud PA, Oksenberg JR, Bevan C, Crabtree-Hartman E et al (2016) Long-term evolution of multiple sclerosis disability in the treatment era. Ann Neurol 80(4):499–510

    Article  Google Scholar 

  151. Brown JWL, Coles A, Horakova D, Havrdova E, Izquierdo G, Prat A et al (2019) Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA 321(2):175–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rotstein DL, Healy BC, Malik MT, Chitnis T, Weiner HL (2015) Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort. JAMA Neurol 72(2):152–158

    Article  PubMed  Google Scholar 

  153. Giovannoni G, Turner B, Gnanapavan S, Offiah C, Schmierer K, Marta M (2015) Is it time to target no evident disease activity (NEDA) in multiple sclerosis? Mult Scler Relat Disord 4(4):329–333

    Article  PubMed  Google Scholar 

  154. Merkel B, Butzkueven H, Traboulsee AL, Havrdova E, Kalincik T (2017) Timing of high-efficacy therapy in relapsing-remitting multiple sclerosis: a systematic review. Autoimmun Rev 16(6):658–665

    Article  PubMed  Google Scholar 

  155. Rae-Grant A, Day GS, Marrie RA, Rabinstein A, Cree BAC, Gronseth GS et al (2018) Practice guideline recommendations summary: disease-modifying therapies for adults with multiple sclerosis: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 90(17):777–788

    Article  PubMed  Google Scholar 

  156. Voskuhl R, Momtazee C (2017) Pregnancy: effect on multiple sclerosis, treatment considerations, and breastfeeding. Neurotherapeutics 14(4):974–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Crabtree-Hartman E (2018) Advanced symptom management in multiple sclerosis. Neurol Clin 36(1):197–218

    Article  PubMed  Google Scholar 

  158. Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis (1998) European Study Group on interferon beta-1b in secondary progressive MS. Lancet 352(9139):1491–1497

    Google Scholar 

  159. Panitch H, Miller A, Paty D, Weinshenker B, North American Study Group on Interferon beta-1b in Secondary Progressive MS (2004) Interferon beta-1b in secondary progressive MS: results from a 3-year controlled study. Neurology 63(10):1788–1795

    Article  PubMed  Google Scholar 

  160. Kappos L, Weinshenker B, Pozzilli C, Thompson AJ, Dahlke F, Beckmann K et al (2004) Interferon beta-1b in secondary progressive MS: a combined analysis of the two trials. Neurology 63(10):1779–1787

    Article  CAS  PubMed  Google Scholar 

  161. Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G, Gold R et al (2018) Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 391(10127):1263–1273

    Article  CAS  PubMed  Google Scholar 

  162. Brenton JN, Banwell BL (2016) Therapeutic approach to the management of pediatric demyelinating disease: multiple sclerosis and acute disseminated encephalomyelitis. Neurotherapeutics 13(1):84–95

    Article  CAS  PubMed  Google Scholar 

  163. Chitnis T, Arnold DL, Banwell B, Bruck W, Ghezzi A, Giovannoni G et al (2018) Trial of Fingolimod versus interferon beta-1a in pediatric multiple sclerosis. N Engl J Med 379(11):1017–1027

    Article  CAS  PubMed  Google Scholar 

  164. Koelman DL, Mateen FJ (2015) Acute disseminated encephalomyelitis: current controversies in diagnosis and outcome. J Neurol 262(9):2013–2024

    Article  CAS  PubMed  Google Scholar 

  165. Shahar E, Andraus J, Savitzki D, Pilar G, Zelnik N (2002) Outcome of severe encephalomyelitis in children: effect of high-dose methylprednisolone and immunoglobulins. J Child Neurol 17(11):810–814

    Article  PubMed  Google Scholar 

  166. Ravaglia S, Piccolo G, Ceroni M, Franciotta D, Pichiecchio A, Bastianello S et al (2007) Severe steroid-resistant post-infectious encephalomyelitis: general features and effects of IVIg. J Neurol 254(11):1518–1523

    Article  CAS  PubMed  Google Scholar 

  167. Koelman DL, Chahin S, Mar SS, Venkatesan A, Hoganson GM, Yeshokumar AK et al (2016) Acute disseminated encephalomyelitis in 228 patients: a retrospective, multicenter US study. Neurology 86(22):2085–2093

    Article  CAS  PubMed  Google Scholar 

  168. Khurana DS, Melvin JJ, Kothare SV, Valencia I, Hardison HH, Yum S et al (2005) Acute disseminated encephalomyelitis in children: discordant neurologic and neuroimaging abnormalities and response to plasmapheresis. Pediatrics 116(2):431–436

    Article  PubMed  Google Scholar 

  169. Wingerchuk DM, Hogancamp WF, O’Brien PC, Weinshenker BG (1999) The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 53(5):1107–1114

    Article  CAS  PubMed  Google Scholar 

  170. Bonnan M, Valentino R, Debeugny S, Merle H, Ferge JL, Mehdaoui H et al (2018) Short delay to initiate plasma exchange is the strongest predictor of outcome in severe attacks of NMO spectrum disorders. J Neurol Neurosurg Psychiatry 89(4):346–351

    Article  PubMed  Google Scholar 

  171. Jiao Y, Cui L, Zhang W, Zhang Y, Wang W, Zhang L et al (2018) Plasma exchange for neuromyelitis optica spectrum disorders in Chinese patients and factors predictive of short-term outcome. Clin Ther 40(4):603–612

    Article  PubMed  Google Scholar 

  172. Kleiter I, Gahlen A, Borisow N, Fischer K, Wernecke KD, Hellwig K et al (2018) Apheresis therapies for NMOSD attacks: a retrospective study of 207 therapeutic interventions. Neurol Neuroimmunol Neuroinflamm 5(6):e504

    Article  PubMed  PubMed Central  Google Scholar 

  173. Papadopoulos MC, Bennett JL, Verkman AS (2014) Treatment of neuromyelitis optica: state-of-the-art and emerging therapies. Nat Rev Neurol 10(9):493–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Nikoo Z, Badihian S, Shaygannejad V, Asgari N, Ashtari F (2017) Comparison of the efficacy of azathioprine and rituximab in neuromyelitis optica spectrum disorder: a randomized clinical trial. J Neurol 264(9):2003–2009

    Article  CAS  PubMed  Google Scholar 

  175. Wingerchuk DM, Weinshenker BG (2008) Neuromyelitis optica. Curr Treat Options Neurol 10(1):55–66

    Article  PubMed  Google Scholar 

  176. Bartsch T, Rempe T, Leypoldt F, Riedel C, Jansen O, Berg D et al (2019) The spectrum of progressive multifocal leukoencephalopathy: a practical approach. Eur J Neurol 26(4):566–e41

    Article  CAS  PubMed  Google Scholar 

  177. Bloomgren G, Richman S, Hotermans C, Subramanyam M, Goelz S, Natarajan A et al (2012) Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med 366(20):1870–1880

    Article  CAS  PubMed  Google Scholar 

  178. Plavina T, Subramanyam M, Bloomgren G, Richman S, Pace A, Lee S et al (2014) Anti-JC virus antibody levels in serum or plasma further define risk of natalizumab-associated progressive multifocal leukoencephalopathy. Ann Neurol 76(6):802–812

    Article  CAS  PubMed  Google Scholar 

  179. Zhovtis Ryerson L, Frohman TC, Foley J, Kister I, Weinstock-Guttman B, Tornatore C et al (2016) Extended interval dosing of natalizumab in multiple sclerosis. J Neurol Neurosurg Psychiatry 87(8):885–889

    Article  CAS  PubMed  Google Scholar 

  180. Yamout BI, Sahraian MA, Ayoubi NE, Tamim H, Nicolas J, Khoury SJ et al (2018) Efficacy and safety of natalizumab extended interval dosing. Mult Scler Relat Disord 24:113–116

    Article  PubMed  Google Scholar 

  181. Pavlovic D, Patera AC, Nyberg F, Gerber M, Liu M (2015) Progressive Multifocal Leukeoncephalopathy C. Progressive multifocal leukoencephalopathy: current treatment options and future perspectives. Ther Adv Neurol Disord 8(6):255–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Clifford DB, De Luca A, Simpson DM, Arendt G, Giovannoni G, Nath A (2010) Natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: lessons from 28 cases. Lancet Neurol 9(4):438–446

    Article  CAS  PubMed  Google Scholar 

  183. Scarpazza C, Prosperini L, De Rossi N, Moiola L, Sormani MP, Gerevini S et al (2017) To do or not to do? plasma exchange and timing of steroid administration in progressive multifocal leukoencephalopathy. Ann Neurol 82(5):697–705

    Article  CAS  PubMed  Google Scholar 

  184. Tan IL, McArthur JC, Clifford DB, Major EO, Nath A (2011) Immune reconstitution inflammatory syndrome in natalizumab-associated PML. Neurology 77(11):1061–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Fournier A, Martin-Blondel G, Lechapt-Zalcman E, Dina J, Kazemi A, Verdon R et al (2017) Immune reconstitution inflammatory syndrome unmasking or worsening AIDS-related progressive multifocal leukoencephalopathy: a literature review. Front Immunol 8:577

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristides A. Capizzano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Capizzano, A.A., Moritani, T., Romeo, A. (2021). Demyelinating Diseases. In: Moritani, T., Capizzano, A.A. (eds) Diffusion-Weighted MR Imaging of the Brain, Head and Neck, and Spine. Springer, Cham. https://doi.org/10.1007/978-3-030-62120-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62120-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62119-3

  • Online ISBN: 978-3-030-62120-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics