Skip to main content

Monitoring the Functional Status of the Peritoneum

  • Reference work entry
  • First Online:
Nolph and Gokal's Textbook of Peritoneal Dialysis
  • 438 Accesses

Abstract

In this chapter information is given on what can be monitored of the peritoneal membrane. First the various aspects of mesothelial cell markers are discussed, followed by other markers of peritoneal structures. Thereafter, peritoneal solute and fluid transport is discussed. Markers associated with specific peritoneal abnormalities such as peritonitis, long-term PD, peritoneal sclerosis, and more biocompatible solutions are discussed. Finally the relevance of monitoring peritoneal solute and fluid transport using the various known mathematical models is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Topley N. The host’s initial response to peritoneal infection: the pivotal role of the mesothelial cell. Perit Dial Int. 1995;15:116–7.

    Article  CAS  PubMed  Google Scholar 

  2. Topley N, Coles GA, Williams JD. Biocompatibility studies on peritoneal cells. Perit Dial Int. 1994; 14(Suppl 3):S21–8.

    Article  PubMed  Google Scholar 

  3. Breborowicz A, Rodela H, Oreopoulos DG. Toxicity of osmotic solutes on human mesothelial cells in vitro. Kidney Int. 1992;41:1280–5.

    Article  CAS  PubMed  Google Scholar 

  4. Witowski J, Topley N, Jorres A, Liberek T, Coles GA, Williams JD. Effect of lactate-buffered peritoneal dialysis fluids on human peritoneal mesothelial cell interleukin-6 and prostaglandin synthesis. Kidney Int. 1994;46:282–93.

    Google Scholar 

  5. Yang AH, Chen JY, Lin YP, Huang TP, Wu CW. Peritoneal dialysis solution induces apoptosis of mesothelial cells. Kidney Int. 1997;51:1280–8.

    Article  CAS  PubMed  Google Scholar 

  6. Dobbie JW, Zaki M, Wilson L. Ultrastructural studies on the peritoneum with special reference to chronic ambulatory peritoneal dialysis. Scott Med J. 1981;26:213–23.

    Article  CAS  PubMed  Google Scholar 

  7. Di Paolo N, Sacchi G, De Mia M, Gaggiotti E, Capotondo L, Rossi R, et al. Morphology of the peritoneal membrane during continuous ambulatory peritoneal dialysis. Nephron. 1986;44:204–11.

    Article  PubMed  Google Scholar 

  8. Gotloib L, Shostak A, Bar-Sella P, Cohen R. Continuous mesothelial injury and regeneration during long term peritoneal dialysis. Perit Dial Bull. 1987;7: 148–55.

    Article  Google Scholar 

  9. Dobbie JW. Morphology of the peritoneum in CAPD. Blood Purif. 1989;7:74–85.

    Article  CAS  PubMed  Google Scholar 

  10. Pollock CA, Ibels LS, Eckstein RP, Graham JC, Caterson RJ, Mahony JF, et al. Peritoneal morphology on maintenance dialysis. Am J Nephrol. 1989;9: 198–204.

    Article  CAS  PubMed  Google Scholar 

  11. Dobbie JW, Lloyd JK, Gall CA. Categorization of ultrastructural changes in peritoneal mesothelium, stroma and blood vessels in uremia and CAPD patients. Adv Perit Dial. 1990;6:3–12.

    CAS  PubMed  Google Scholar 

  12. Di Paolo N, Sacchi G. The peritoneum during peritoneal dialysis. In: Di Paolo N, Sacchi G, editors. Atlas of peritoneal histology. Perit Dial Int. 2000;20(Suppl 3):S37–63.

    Google Scholar 

  13. Dobbie JW, Anderson JD, Hind C. Long-term effects of peritoneal dialysis on peritoneal morphology. Perit Dial Int. 1994;14(Suppl 3):S16–20.

    Article  PubMed  Google Scholar 

  14. Dobbie JW. Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int. 1992;12:14–27.

    Article  CAS  PubMed  Google Scholar 

  15. Suassuna JHR, Das Neves FC, Hartley B, Ogg CS, Cameron JS. Immunohistochemical studies of the peritoneal membrane and infiltrating cells in normal subjects and patients on CAPD. Kidney Int. 1994;46:443–54.

    Article  CAS  PubMed  Google Scholar 

  16. Dobbie JW. New concepts in molecular biology and ultrastructural pathology of the peritoneum: their significance for peritoneal dialysis. Am J Kidney Dis. 1990;15:97–109.

    Article  CAS  PubMed  Google Scholar 

  17. Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C, Jimenez-Heffernan JA, Aguilera A, Sanchez-Tomero JA, Bajo MA, Alvarez V, Castro MA, del Peso G, Cirujeda A, Gamallo C, Sanchez-Madrid F, Lopez-Cabrera M. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med. 2003;348:403–13.

    Article  PubMed  Google Scholar 

  18. Yang AH, Chen JY, Lin JK. Myofibroblastic conversion of mesothelial cells. Kidney Int. 2003;63:1530–9.

    Article  PubMed  Google Scholar 

  19. Margetts PJ, Bonniaud P, Liu L, Hoff CM, Holmes CJ, West-Mays JA, et al. Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol. 2005;16:425–36.

    Article  CAS  PubMed  Google Scholar 

  20. Aroeira LS, Aguilera A, Selgas R, Ramirez-Huesca M, Perez-Lozano ML, Cirugeda A, et al. Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factor. Am J Kidney Dis. 2005;46:938–48.

    Article  CAS  PubMed  Google Scholar 

  21. Devuyst O, Margetts PJ, Topley N. The pathophysiology of the peritoneal membrane. J Am Soc Nephrol. 2010;21:1077–85.

    Article  CAS  PubMed  Google Scholar 

  22. Koomen GCM, Betjes MGH, Zemel D, Krediet RT, Hoek FJ. Cancer antigen 125 is locally produced in the peritoneal cavity during continuous ambulatory peritoneal dialysis. Perit Dial Int. 1994;14:132–6.

    Article  CAS  PubMed  Google Scholar 

  23. Visser CE, Brouwer-Steenbergen JJE, Betjes MGH, Koomen GCM, Beelen RHJ, Krediet RT. Cancer anti-gen 125: a bulk marker for the mesothelial mass in stable peritoneal dialysis patients. Nephrol Dial Transplant. 1995;10:64–9.

    CAS  PubMed  Google Scholar 

  24. O’Brien TJ, Hardin JW, Bannon GA, Norvis JS, Quirk G Jr. CA 125 antigen in human amniotic fluid and fetal membranes. Am J Obstet Gynecol. 1986;155:50–5.

    Article  PubMed  Google Scholar 

  25. O’Brien TJ, Raymond LM, Bannon GA, Ford HD, Hardartottir H, Miller FC, et al. New monoclonal antibodies identify the glycoprotein carrying the CA 125 epitope. Am J Obstet Gynecol. 1991;165: 1857–64.

    Article  PubMed  Google Scholar 

  26. Kabawat SE, Bast RC Jr, Bhan AK, Welch WR, Knapp RC, Colvin RB. Tissue distribution of a coelomic epithelium related antigen recognized by the monoclonal antibody OC125. Int J Gynecol Pathol. 1983;2:275–85.

    Article  CAS  PubMed  Google Scholar 

  27. Bast RC Jr, Klug TL, St John E, Jenison E, Niloff JM, Lazarus H, et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N Engl J Med. 1983;309:883–7.

    Article  PubMed  Google Scholar 

  28. Jacobs L, Stabile I, Bridges J, Kemsley P, Reynolds C, Grudzinskas J, et al. Multimodal approach to screening for ovarian cancer. Lancet. 1988;1:268–71.

    Article  CAS  PubMed  Google Scholar 

  29. Malkasian GD, Knapp RC, Lavin PT, Zurawski VR, Podrate KC, Stanhope R, et al. Preoperative evaluation of serum CA 125 levels in premenopausal and postmenopausal patients with pelvic masses: discrimination of benign from malignant disease. Am J Obstet Gynecol. 1988;159:341–6.

    Article  PubMed  Google Scholar 

  30. Patsner B, Mann WJ. The value of preoperative serum CA125 levels in patients with a pelvic mass. Am J Obstet Gynecol. 1988;159:873–6.

    Article  CAS  PubMed  Google Scholar 

  31. Zurawski VR, Orjaseter H, Anderson A, Jellum E. Elevated serum CA125 levels prior to diagnosis of ovarian neoplasia: relevance for early detection of ovarian cancer. Int J Cancer. 1988;42:677–80.

    Article  PubMed  Google Scholar 

  32. Bon GJ, Kenemans P, Verstraeten R, Van Kamp GJ, Hilgers J. Serum tumor marker immunoassays in gynecologic oncology: establishment of reference values. Am J Obstet Gynecol. 1996;174:107–14.

    Article  CAS  PubMed  Google Scholar 

  33. Buller RE, Vasilev S, DiSaia PJ. CA 125 kinetics: a cost-effective clinical tool to evaluate trial outcomes in the 1990s. Am J Obstet Gynecol. 1996;174:1241–54.

    Article  CAS  PubMed  Google Scholar 

  34. Jacobs I, Bast RC Jr. The CA125 tumor-associated antigen: a review of the literature. Hum Reprod. 1989;4:1–12.

    Article  CAS  PubMed  Google Scholar 

  35. Van der Burg MEL, Lammes FB, Verweij J. CA125 in ovarian cancer. Neth J Med. 1992;40:36–51.

    PubMed  Google Scholar 

  36. Barbieri RL, Niloff JM, Bast RC Jr, Schnaetze E, Kistner RW, Knapp RC. Elevated serum concentrations of CA125 in patients with advanced endometriosis. Fertil Steril. 1986;45:630–4.

    Article  CAS  PubMed  Google Scholar 

  37. Halila H, Steuman UH, Seppula M. Ovarian cancer antigen CA125 levels in pelvic inflammatory disease and pregnancy. Cancer. 1986;57:1327–9.

    Article  CAS  PubMed  Google Scholar 

  38. Simseh H, Kadayifci A, Okan E. High serum level of CA125 in malignant peritoneal mesothelioma. Eur J Cancer. 1995;31:129.

    Article  Google Scholar 

  39. Molina R, Filella X, Bruix J, Mengual P, Bosch J, Colvet X, et al. Cancer antigen 125 in serum and ascitic fluid of patients with liver diseases. Clin Chem. 1991;37:1379–83.

    Article  CAS  PubMed  Google Scholar 

  40. Cases A, Filella X, Molina R, Ballesta AM, Lopez-Pedret J, Revert L. Tumor markers in chronic renal failure and hemodialysis patients. Nephron. 1991;57:183–6.

    Article  CAS  PubMed  Google Scholar 

  41. Zeferos N, Digenis GE, Christophoraki M, Alexopoulos I, Kostakis A, Gyftahi H. Tumor markers in patients undergoing hemodialysis or kidney transplantation. Nephron. 1991;59:618–20.

    Article  CAS  PubMed  Google Scholar 

  42. Menzin AW, Kobrin S, Pollak E, Goodman DBP, Rubin SC. The effect of renal function on serum levels of CA125. Gynecol Oncol. 1995;58:375–7.

    Article  CAS  PubMed  Google Scholar 

  43. Passadakis P, Panagoutsos S, Thodis E, Tsivara I, Sopassi F, Kartali S, et al. Evaluation of changes in serum and dialysate levels of cancer antigen 125 in stable continuous ambulatory peritoneal dialysis patients. Adv Perit Dial. 1999;15:40–4.

    CAS  PubMed  Google Scholar 

  44. Camci C, Buyukberber S, Tarakcioglu M, Adam SM, Camci C, Turk HM, et al. The effect of continuous ambulatory peritoneal dialysis on serum CA-125 levels. Eur J Gynaecol Oncol. 2002;23:472–4.

    CAS  PubMed  Google Scholar 

  45. Lye WC, Tambyah P, Leong SO, Lee EJC. Serum tumor markers in patients on dialysis and kidney transplantation. Adv Perit Dial. 1994;10:109–11.

    CAS  PubMed  Google Scholar 

  46. Sevinc A, Buyukberber S, Sari R, Kiroglu Y, Turk HM, Ates M. Elevated serum CA-125 levels in hemodialysis patients with peritoneal, pleural, or pericardial fluids. Gynecol Oncol. 2000;77:254–7.

    Article  CAS  PubMed  Google Scholar 

  47. Kawabe T, Ishii M, Sugimoto T, Tagawa H. Low serum CA125 concentration in chronic renal failure treated with continuous ambulatory peritoneal dialysis. Clin Chim Acta. 1987;168:113–4.

    Article  CAS  PubMed  Google Scholar 

  48. Bastiani B, Chu H. Serum CA125 in chronic peritoneal dialysis (PD) patients: the effect of PD catheter implantation and peritonitis. Am J Nephrol. 1995; 15:468–72.

    Article  Google Scholar 

  49. Pannekeet MM, Zemel D, Koomen GCM, Struijk DG, Krediet RT. Dialysate markers of peritoneal tissue during peritonitis and in stable CAPD. Perit Dial Int. 1995;15:217–25.

    Article  CAS  PubMed  Google Scholar 

  50. Ismail M, Rotmensch J, Mercer LJ, Block BS, Salti GI, Holt JA. CA125 in peritoneal fluid from patients with nonmalignant gynecologic disorders. J Reprod Med. 1994;39:510–2.

    CAS  PubMed  Google Scholar 

  51. Onsrud M, Shabana A, Austgullen R, Nustad K. Comparison between soluble tumor necrosis factor receptors and CA125 in peritoneal fluids as a marker for epithelial ovarian cancer. Gynecol Oncol. 1995; 57:183–7.

    Article  CAS  PubMed  Google Scholar 

  52. Redman CWE, Jones SR, Luesley DM, Nicholl SE, Kelly K, Buxton EJ, et al. Peritoneal trauma releases CA125? Br J Cancer. 1988;58:502–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stylianou E, Jenner LA, Davies M, Coles GA, Williams JD. Isolation, culture and characterization of human peritoneal mesothelial cells. Kidney Int. 1990;37:1563–70.

    Article  CAS  PubMed  Google Scholar 

  54. Betjes MGH, Tak CW, Struijk DG, Krediet RT, Arisz L, Beelen RHJ. Adherence of staphylococci to plastic, mesothelial cells and mesothelial extracellular matrix. Adv Perit Dial. 1992;8:215–8.

    CAS  PubMed  Google Scholar 

  55. Zeillemaker AM, Verbrugh HA, Hoynck van Papendrecht AAGM, Leguit P. CA125 secretion by peritoneal mesothelial cells. J Clin Pathol. 1994; 47:263–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Breborowicz A, Breborowicz M, Pyda M, Polubinska A, Oreopoulos D. Limitations of CA125 as an index of peritoneal mesothelial cell mass. Nephron Clin Pract. 2005;100:c46–51.

    Article  PubMed  Google Scholar 

  57. Breborowicz A, Breborowicz M, Oreopoulos D. Glucose-induced changes in the phenotype of human peritoneal mesothelial cells: effect of L-2-oxothiazolide corboxylic acid. Am J Nephrol. 2003;23:471–6.

    Article  CAS  PubMed  Google Scholar 

  58. Cheema H, Bargman JM. Cancer antigen 125 as a biomarker in peritoneal dialysis: mesothelial cell health or death? Perit Dial Int. 2013;33:349–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sanusi AA, Zweers MM, Weening JJ, de Waart DR, Struijk DG, Krediet RT. Expression of cancer anti-gen 125 by peritoneal mesothelial cells is not influenced by duration of peritoneal dialysis. Perit Dial Int. 2001;21:495–500.

    Article  CAS  PubMed  Google Scholar 

  60. Lai KN, Lai KB, Szeto CC, Ho KKL, Poon P, Lam CWK, et al. Dialysate cell population and cancer antigen 125 in stable continuous ambulatory peritoneal dialysis patients: their relationship with transport parameters. Am J Kidney Dis. 1997;29:699–705.

    Article  CAS  PubMed  Google Scholar 

  61. Wong ECC. Difficulties in analysis of CA125 in diluted samples. Clin Chem. 1995;41:1543–4.

    Article  CAS  PubMed  Google Scholar 

  62. Ho-dac-Pannekeet MM, Hiralall JK, Struijk DG, Krediet RT. Longitudinal follow-up of CA125 in peritoneal effluent. Kidney Int. 1997;51:888–93.

    Article  CAS  PubMed  Google Scholar 

  63. Jimenez C, Diaz C, Selgas R, Bajo MA, Del Peso G, Sánchez-Tomero JA, et al. Peritoneal kinetics of cancer antigen 125 in peritoneal dialysis patients: the relationship with peritoneal outcome. Adv Perit Dial. 1999;15:36–9.

    CAS  PubMed  Google Scholar 

  64. Akman S, van Westrhenen R, De Waart DR, Hiralall JK, Zweers MM, Krediet RT. The effect of dwell time on dialysate cancer antigen 125 appearance rates in patients on continuous ambulatory peritoneal dialysis. Adv Perit Dial. 2003;19:24–7.

    PubMed  Google Scholar 

  65. Pannekeet MM, Koomen GCM, Struijk DG, Krediet RT. Dialysate CA125 in stable CAPD patients: no relation with transport parameters. Clin Nephrol. 1995;44:248–54.

    CAS  PubMed  Google Scholar 

  66. Lopes Barreto D, Coester AM, Noordzij M, Smit W, Struijk DG, Rogers S, et al. Variability of effluent cancer antigen 125 and interleukin-6 determination in peritoneal dialysis patients. Nephrol Dial Transplant. 2011;26:3739–44.

    Article  CAS  PubMed  Google Scholar 

  67. Kawanishi H, Moriishi M, Harada Y, Sakikubo E, Nagai T, Tsuchiya S. Necessity of correcting cancer antigen 125 appearance rates by body surface area. Adv Perit Dial. 2000;16:22–5.

    CAS  PubMed  Google Scholar 

  68. Redahan L, Davenport A. Peritoneal dialysate effluent and serum CA125 concentrations in stable peritoneal dialysis patients. J Nephrol. 2016;29:427–34.

    Article  CAS  PubMed  Google Scholar 

  69. Bouts AHM, Groothoff JW, Ploos van Amstel S, Zweers MM, Davin J-C, Krediet RT. Dialysate cancer anti-gen 125 levels in children treated with peritoneal dialysis. Adv Perit Dial. 2000;16:328–31.

    CAS  PubMed  Google Scholar 

  70. Turhan P, Sever L, Caliskan S, Kasapcopur O, Sever A, Hacibekiroglu M, et al. Dialysate CA125 levels in children on continuous peritoneal dialysis. Pediatr Nephrol. 2005;20:1615–21.

    Article  PubMed  Google Scholar 

  71. Grzegorzewska AE, Mlot M, Leande M. Serum levels of cancer antigen 125 and interleukin-15 in relation to the nutrition status of peritoneal dialysis patients. Adv Perit Dial. 2004;20:185–9.

    CAS  PubMed  Google Scholar 

  72. Flessner M. Osmotic barrier of the parietal peritoneum. Am J Physiol. 1994;267:F861–70.

    CAS  PubMed  Google Scholar 

  73. Pietrzak I, Hirszel P, Shostak A, Welch PG, Lee RE, Maher JF. Splanchnic volume, not flow rate, determines peritoneal permeability. ASAIO Trans. 1989;35:583–7.

    Article  CAS  PubMed  Google Scholar 

  74. Douma CE, De Waart DR, Struijk DG, Krediet RT. The nitric oxide donor nitroprusside intraperitoneally affects peritoneal permeability in CAPD. Kidney Int. 1997;51:1885–92.

    Article  CAS  PubMed  Google Scholar 

  75. Ho-dac-Pannekeet MM, Krediet RT. Inflammatory changes in vivo during CAPD: what can the effluent tell us? Kidney Int. 1966;50(Suppl 56):S12–6.

    Google Scholar 

  76. Zemel D, Koomen GCM, Hart AAM, Ten Berge RJM, Struijk DG, Krediet RT. Relationship of TNF-α, interleukin-6 and prostaglandins to peritoneal permeability for macromolecules during longitudinal follow-up of peritonitis in continuous ambulatory peritoneal dialysis. J Lab Clin Med. 1993;122: 686–96.

    CAS  PubMed  Google Scholar 

  77. Zemel D, Struijk DG, Dinkla C, Stolk LM, Ten Berge RJM, Krediet RT. Effects of intraperitoneal cyclooxygenase inhibition on inflammatory mediators in dialysate and peritoneal membrane characteristics during peritonitis in continuous ambulatory peritoneal dialysis. J Lab Clin Med. 1995;126: 204–15.

    CAS  PubMed  Google Scholar 

  78. Zemel D, Krediet RT. Cytokine patterns in the effluent of continuous ambulatory peritoneal dialysis: relationship to peritoneal permeability. Blood Purif. 1996;14:198–216.

    Article  CAS  PubMed  Google Scholar 

  79. Fussholler A, Grabensee B, Plum J. Effluent CA 125 concentration in chronic peritoneal dialysis patients: influence of PD duration, peritoneal transport and PD regimen. Kidney Blood Press Res. 2003;26:118–22.

    Article  PubMed  Google Scholar 

  80. van Esch S, Zweers MM, Jansen MA, de Waart DR, van Manen JG, Krediet RT. Determinants of peritoneal solute transport rates in newly started nondiabetic peritoneal dialysis patients. Perit Dial Int. 2004;24:554–61.

    Article  PubMed  Google Scholar 

  81. Rodrigues A, Martins M, Santos MJ, Fonseca I, Oliveira JC, Cabrita A, et al. Evaluation of effluent markers cancer antigen 125, vascular endothelial growth factor, and interleukin-6: relationship with peritoneal transport. Adv Perit Dial. 2004;20:8–12.

    CAS  PubMed  Google Scholar 

  82. Mateijsen MA, van der Wal AC, Hendriks PM, Zweers MM, Mulder J, Struijk DG, Krediet RT. Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis. Perit Dial Int. 1999;19:517–25.

    Article  CAS  PubMed  Google Scholar 

  83. Ho-dac-Pannekeet MM, Hiralall JK, Struijk DG, Krediet RT. Markers of peritoneal mesothelial cells during treatment with peritoneal dialysis. Adv Perit Dial. 1997;13:72–6.

    CAS  PubMed  Google Scholar 

  84. Martikainen T, Ekstrand A, Honkanen E, Teppo AM, Gronhagen-Riska C. Do interleukin-6, hyaluronan, soluble intercellular adhesion molecule-1 and cancer antigen 125 in dialysate predict changes in peritoneal function? A 1-year follow-up study. Scand J Urol Nephrol. 2005;39:410–6.

    Article  CAS  PubMed  Google Scholar 

  85. Candan C, Turhan P, Sever L, Civilibal M, Canpolat N, Caliskan S, et al. Dialysate CA125 levels after 5 years on continuous peritoneal dialysis. Pediatr Nephrol. 2011;26:783–8.

    Article  PubMed  Google Scholar 

  86. Ho-dac-Pannekeet MM. Assessment of peritoneal permeability and mesothelial cell mass in peritoneal dialysis patients (Thesis). Amsterdam: University of Amsterdam; 1997.

    Google Scholar 

  87. Otsuka Y, Nakayama M, Ikeda M, Sherif AM, Yokoyama K, Yamamoto H, et al. Restoration of peritoneal integrity after withdrawal of peritoneal dialysis: characteristic features of the patients at risk of encapsulating peritoneal sclerosis. Clin Exp Nephrol. 2005;9:315–9.

    Article  PubMed  Google Scholar 

  88. Miranda B, Selgas R, Celadilla O, Munoz J, Sánchez-Sicilia L. Peritoneal resting and heparinization as an effective treatment for ultrafiltration failure in patients on CAPD. Contrib Nephrol. 1991;89:199–204.

    Article  CAS  PubMed  Google Scholar 

  89. Da Alvaro F, Castro MJ, Dapena F, Bajo MA, Fernandez-Reyes MJ, Romero JR, et al. Peritoneal resting is beneficial in peritoneal hyperpermeability and ultrafiltration failure. Adv Perit Dial. 1993;9: 56–61.

    PubMed  Google Scholar 

  90. Panorchan K, Davenport A. Diagnostic and prognostic role of peritoneal CA 125 in peritoneal dialysis patients presenting with acute peritonitis. BMC Nephrol. 2014;15:149.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hagmolen of Ten Have W, Ho-dac-Pannekeet MM, Struijk DG, Krediet RT. Mesothelial regeneration after peritonitis in dialysis patients (Abstract). J Am Soc Nephrol. 1997;8:180A.

    Google Scholar 

  92. Ho-dac-Pannekeet MM. Peritoneal fluid markers of mesothelial cells and function. Adv Ren Replace Ther. 1998;5:205–11.

    Article  CAS  PubMed  Google Scholar 

  93. Simonsen O, Wieslander A, Landgren C, Rippe B. Less infusion pain and elevated level of cancer antigen 125 by the use of a new and more biocompatible PD fluid. Adv Perit Dial. 1996;12:156–60.

    CAS  PubMed  Google Scholar 

  94. Cappelli G, Bandiani G, Cancarini GC, Feriani M, Dell’Aquila R, Saffioti S, et al. Low concentrations of glucose degradation products in peritoneal dialysis fluids and their impact on biocompatibility parameters: prospective cross-over study with a three-compartment bag. Adv Perit Dial. 1999;15:238–42.

    CAS  PubMed  Google Scholar 

  95. Rippe B, Simonsen O, Heimburger O, Christensson A, Haraldsson B, Stelin G, et al. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int. 2001;59:348–57.

    Article  CAS  PubMed  Google Scholar 

  96. Jones S, Holmes CJ, Krediet RT, Mackenzie R, Faict D, Tranaeus A, et al. Continuous dialysis with bicarbonate/lactate based peritoneal dialysis solution is associated with an increase in dialysate CA125 and a decrease in hyaluronic acid (HA) levels. Kidney Int. 2001;59:1529–38.

    Article  CAS  PubMed  Google Scholar 

  97. Van Biesen W, Boer W, De Greve B, Dequidt C, Vijt D, Faict D, et al. A randomized clinical trial with a 0.6% amino acid/1.4% glycerol peritoneal dialysis solution. Perit Dial Int. 2004;24:222–30.

    Article  PubMed  Google Scholar 

  98. Williams JD, Topley N, Craig KJ, Mackenzie RK, Pischetsrieder M, Lage C, et al. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int. 2004;66:408–18.

    Article  PubMed  Google Scholar 

  99. Witowski J, Korybalska K, Ksiazek K, Wisniewska-Elnur J, Jorres A, Lage C, et al. Peritoneal dialysis with solutions low in glucose degradation products is associated with improved biocompatibility profile towards peritoneal mesothelial cells. Nephrol Dial Transplant. 2004;19:917–24.

    Article  CAS  PubMed  Google Scholar 

  100. Martikainen TA, Teppo AM, Gronhagen-Riska C, Ekstrand AV. Glucose-free dialysis solutions: inductors of inflammation or preservers of peritoneal membrane? Perit Dial Int. 2005;25:453–60.

    Article  CAS  PubMed  Google Scholar 

  101. Szeto CC, Chow KM, Lam CW, Leung CB, Kwan BC, Chung KY, et al. Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products – a 1-year randomized control trial. Nephrol Dial Transplant. 2006;22: 552–9.

    Article  PubMed  Google Scholar 

  102. le Poole CY, Welten AG, ter Wee PM, Paauw NJ, Djorai AN, Valentijn RM, et al. A peritoneal dialysis regimen low in glucose and glucose degradation products results in increased cancer antigen 125 and peritoneal activation. Perit Dial Int. 2012;32:305–15.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Grahame GR, Torchia MG, Dankewich KA, Ferguson IA. Surface-active material in peritoneal effluent of CAPD patients. Perit Dial Bull. 1985;5:109–11.

    Article  Google Scholar 

  104. Di Paolo N, Buoncristiani U, Capotondo L, et al. Phosphatidylcholine and peritoneal transport during peritoneal dialysis. Nephron. 1986;44:365–70.

    Article  PubMed  Google Scholar 

  105. Williams JD, Beavis JM. Phosphatidylcholine and peritoneal dialysis. Contrib Nephrol. 1990;85:142–9.

    Article  CAS  PubMed  Google Scholar 

  106. Beavis J, Harwood JL, Coles GA, Williams JD. Synthesis of phospholipids by human peritoneal mesothelial cells. Perit Dial Int. 1994;14:348–55.

    Article  CAS  PubMed  Google Scholar 

  107. Dobbie JW, Pavlina T, Lloyd JK, Johnston RC. Phosphatidylcholine synthesis by peritoneal mesothelium: its implications for peritoneal dialysis. Am J Kidney Dis. 1988;12:31–6.

    Article  CAS  PubMed  Google Scholar 

  108. Dobbie JW, Lloyd JK. Mesothelium secretes lamellar bodies in a similar manner to type II pneumocyte secretion of surfactant. Perit Dial Int. 1989;9:215–9.

    Article  CAS  PubMed  Google Scholar 

  109. Lipkin GW, Forbes MA, Cooper EH, Turney JH. Hyaluronic acid metabolism and its clinical significance in patients treated by continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant. 1993;8:357–60.

    CAS  PubMed  Google Scholar 

  110. Yung S, Coles GA, Williams JD, Davies M. The source and possible significance of hyaluronan in the peritoneal cavity. Kidney Int. 1994;46:527–33.

    Article  CAS  PubMed  Google Scholar 

  111. Honkanen E, Froseth B, Gronhagen-Riska C. Serum hyaluronic acid and procollagen III amino terminal propeptide in chronic renal failure. Am J Nephrol. 1991;11:201–6.

    Article  CAS  PubMed  Google Scholar 

  112. Lai KN, Szeto CC, Lai KB, Lam CW, Chan DT, Leung JC. Increased production of hyaluronan by peritoneal cells and its significance in patients on CAPD. Am J Kidney Dis. 1999;33:318–24.

    Article  CAS  PubMed  Google Scholar 

  113. Staprans I, Piel CF, Felts JM. Analysis of selected plasma constituents in continuous ambulatory peritoneal dialysis effluent. Am J Kidney Dis. 1986; 7:490–4.

    Article  CAS  PubMed  Google Scholar 

  114. Davies M, Stylianou E, Yung S, Thomas GJ, Coles GA, Williams JD. Proteoglycans of CAPD-dialysate fluid and mesothelium. Contrib Nephrol. 1990;85:131–41.

    Google Scholar 

  115. Szeto CC, Wong TY, Lai KB, Lam CW, Lai KN, Li PK. Dialysate hyaluronan concentration predicts survival but not peritoneal sclerosis in continuous ambulatory peritoneal dialysis. Am J Kidney Dis. 2000;36:609–14.

    Article  CAS  PubMed  Google Scholar 

  116. Yung S, Thomas GJ, Stylianou E, Williams JD, Coles GA, Davies M. Source of peritoneal proteoglycans. Human peritoneal mesothelial cells synthesize and secrete mainly small dermatan sulfate proteoglycans. Am J Pathol. 1995;146:520–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Herbelin A, Nguyen AT, Zingraff J, Urefla P, Deschamps-Latscha B. Influence of uremia and hemodialysis on circulating interleukin-1 and tumor necrosis factor a. Kidney Int. 1990;37:116–25.

    Article  CAS  PubMed  Google Scholar 

  118. Pereira BJG, Shapiro LS, King AJ, Falagas ME, Strom JA, Dinarello CA. Plasma levels of IL-113, TNFα and their specific inhibitors in undialyzed chronic renal failure, CAPD and hemodialysis patients. Kidney Int. 1994;45:890–6.

    Article  CAS  PubMed  Google Scholar 

  119. Herbelin A, Urefla P, Nguyen AT, Zingraff J, Deschamps-Latscha B. Elevated levels of interleukin-6 in patients with chronic renal failure. Kidney Int. 1991;39:954–60.

    Article  CAS  PubMed  Google Scholar 

  120. Zemel D, ten Berge RJM, Koomen GCM, Struijk DG, Krediet RT. Serum interleukin-6 in continuous ambulatory peritoneal dialysis patients. Nephron. 1993;64:320–1.

    Article  CAS  PubMed  Google Scholar 

  121. Douvdevani A, Rapoport J, Konforti A, Argov S, Ovnat A, Chaimovitz C. Human peritoneal mesothelial cells synthesize IL-lα and β. Kidney Int. 1994;46:993–1001.

    Article  CAS  PubMed  Google Scholar 

  122. Topley N, Jórres A, Luttmann W, et al. Human peritoneal mesothelial cells synthesize IL-6: induction by IL-1β and TNFα. Kidney Int. 1993;43:226–33.

    Article  CAS  PubMed  Google Scholar 

  123. Betjes MGH, Tuk CW, Struijk DG, et al. Interleukin-8 production by human peritoneal mesothelial cells in response to tumor necrosis factor-a, interleukin-1, and medium conditioned by macrophages cocultured with Staphylococcus epidermidis. J Infect Dis. 1993;168: 1202–10.

    Article  CAS  PubMed  Google Scholar 

  124. Topley N, Brown Z, Jórres A, et al. Human peritoneal mesothelial cells synthesize interleukin-8. Synergistic induction by interleukin-1β and tumor necrosis factor-a. Am J Pathol. 1993;142:1876–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Visser CE, Tekstra J, Brouwer-Steenbergen JJ, Tuk CW, Boorsma DM, Sampat-Sardjoepersad SC, Meijer S, Krediet RT, Beelen RH. Chemokines produced by mesothelial cells: huGRO-alpha, IP-10, MCP-1 and RANTES. Clin Exp Immunol. 1998;112:270–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Stylianou E, Mackenzie RK, Davies M, Coles GA, Williams JD. The interaction of organism, phagocyte and mesothelial cell. Contrib Nephrol. 1990;85:30–8.

    Article  CAS  PubMed  Google Scholar 

  127. Shaldon S, Dinarello CA, Wyler DJ. Induction of interleukin-1 during CAPD. Contrib Nephrol. 1987;57:207–12.

    Article  CAS  PubMed  Google Scholar 

  128. Goldman M, Vandenabeele P, Moulart J, et al. Intraperitoneal secretion of interleukin-6 during continuous ambulatory peritoneal dialysis. Nephron. 1990;56:277–80.

    Article  CAS  PubMed  Google Scholar 

  129. Zemel D, ten Berge RJM, Struijk DG, Bloemena E, Koomen GCM, Krediet RT. Interleukin-6 in CAPD patients without peritonitis; relationship to the intrinsic permeability of the peritoneal membrane. Clin Nephrol. 1992;37:97–103.

    CAS  PubMed  Google Scholar 

  130. Lin CY, Lin CC, Huang TP. Serial changes of interleukin-6 and interleukin-8 levels in drain dialysate of uremic patients with continuous ambulatory peritoneal dialysis during peritonitis. Nephron. 1993;63:404–8.

    Article  CAS  PubMed  Google Scholar 

  131. Zemel D, Krediet RT, Koomen GCM, Kortekaas WMR, Geertzen HGM, ten Berge RJM. Interleukin-8 during peritonitis in patients treated with CAPD; an in vivo model of acute inflammation. Nephrol Dial Transplant. 1994;9:169–74.

    CAS  PubMed  Google Scholar 

  132. Brauner A, Hylander B, Wretlind B. Interleukin-6 and interleukin-8 in dialysate and serum from patients on continuous ambulatory peritoneal dialysis. Am J Kidney Dis. 1993;22:430–5.

    Article  CAS  PubMed  Google Scholar 

  133. Steinhauer HB, Gunter B, Schollmeyer P. Stimulation of peritoneal synthesis of vasoactive prostaglandins during peritonitis in patients on continuous ambulatory peritoneal dialysis. Eur J Clin lnvest. 1985;15:1–15.

    Article  CAS  Google Scholar 

  134. Steinhauer HB, Schollmeyer P. Prostaglandin-mediated loss of proteins during peritonitis in continuous ambulatory peritoneal dialysis. Kidney Int. 1986;29:584–90.

    Article  CAS  PubMed  Google Scholar 

  135. Zemel D, Imholz ALT, de Waart DR, Dinkla C, Struijk DG, Krediet RT. Appearance of tumor necrosis factor-a and soluble TNF-receptors I and II in peritoneal effluent of CAPD. Kidney Int. 1994;46:1422–30.

    Article  CAS  PubMed  Google Scholar 

  136. Witowski J, Topley N, Jorres A, Liberek T, Coles GA, Williams JD. Effect of lactate-buffered peritoneal dialysis fluids on human peritoneal mesothelial cell interleukin-6 and prostaglandin synthesis. Kidney Int. 1995;47:282–93.

    Article  CAS  PubMed  Google Scholar 

  137. Selgas R, Del Peso G, Bajo MA, Castro MA, Molina S, Cirugeda A, et al. Spontaneous VEGF production by cultured peritoneal mesothelial cells from patients on peritoneal dialysis. Perit Dial Int. 2000;20:798–801.

    Article  CAS  PubMed  Google Scholar 

  138. Gries E, Kopp J, Thomae U, Kuhlman H. Relation of intraperitoneal and intravascular coagulation and fibrinolysis related antigens in peritoneal dialysis. Thromb Haemost. 1990;63:356–60.

    Article  CAS  PubMed  Google Scholar 

  139. Sitter T, Spannagl M, Schiffl H, Held E, van Hinsbergh VW, Kooistra T. Disbalance between intraperitoneal coagulation and fibrinolysis during peritonitis of CAPD patients: the role of mesothelial cells. Nephrol Dial Transplant. 1995;10:677–83.

    CAS  PubMed  Google Scholar 

  140. van Hinsbergh WM, Kooistra T, Scheffer MA, van Bockel JH, van Muijen GNP. Characterization and fibrinolytic properties of human omental tissue mesothelial cells. Comparison with endothelial cells. Blood. 1990;75:1490–7.

    Article  PubMed  Google Scholar 

  141. Slater ND, Cope GH, Raftery AT. Peritoneal plasminogen activator activity after chronic exposure to dialysis fluid. Perit Dial Int. 1992;12:203–63.

    Article  Google Scholar 

  142. Gotloib L, Digenis GE, Rabinovich S, Medline A, Oreopoulos DG. Ultrastructure of normal rabbit mesentery. Nephron. 1983;34:248–55.

    Article  CAS  PubMed  Google Scholar 

  143. Laurent TC. II. The ultrastructure and physical-chemical properties of interstitial connective tissue. Pflugers Arch. 1972;336(Suppl):S21–42.

    Article  Google Scholar 

  144. Jorres A, Ludat K, Lang J, Sander K, Gahl GM, Frei U, DeJonge K, Williams JD, Topley N. Establishment and functional characterization of human peritoneal fibroblasts in culture: regulation of interleukin-6 production by proinflammatory cytokines. J Am Soc Nephrol. 1996;7:2192–201.

    Article  CAS  PubMed  Google Scholar 

  145. Nagata Y, Matsumura F, Motoyoski H, Yamasaki H, Fukuda K, Tanaka S. Secretion of hyaluronic acid from synovial fibroblasts is enhanced by histamine: a newly observed metabolic effect of histamine. J Lab Clin Med. 1992;120:707–12.

    CAS  PubMed  Google Scholar 

  146. Laurent TC, Fraser JRE. The properties and turnover of hyaluronan. In: Evered D, Whelan J, editors. Functions of proteoglycans. Ciba Foundation Symposium, vol. 124. Chichester: Wiley; 1986. p. 9–29.

    Google Scholar 

  147. Lai KN, Lai KB, Szeto CC, Lam CWK, Leung JCK. Growth factors in continuous ambulatory peritoneal dialysis effluent. Am J Nephrol. 1999;19:416–22.

    Article  CAS  PubMed  Google Scholar 

  148. Zweers MM, De Waart DR, Smit W, Struijk DG, Krediet RT. The growth factors VEGF and TGF-β1 in peritoneal dialysis. J Lab Clin Med. 1999;134: 124–32.

    Article  CAS  PubMed  Google Scholar 

  149. Wong TYH, Szeto CC, Lai KB, Lam CWK, Lai KN, Li PKT. Longitudinal study of peritoneal membrane function in continuous ambulatory peritoneal dialysis: relationship with peritonitis and fibrosing factors. Perit Dial Int. 2000;20:679–85.

    Article  CAS  PubMed  Google Scholar 

  150. Fessler JH, Fessler LI. Biosynthesis of procollagen. Annu Rev Biochem. 1978;47:129–62.

    Article  CAS  PubMed  Google Scholar 

  151. Rohde H, Vargas L, Hahn E, Kalbfleisch H, Bruguera M, Timpl R. Radioimmunoassay for type III procollagen peptide and its application to human liver disease. Eur J Clin Invest. 1979;9:451–9.

    Article  CAS  PubMed  Google Scholar 

  152. Shahin M, Schuppan D, Waldherr R, et al. Serum procollagen peptides and collagen type VI for the assessment of activity and degree of hepatic fibrosis in schistosomiasis and alcoholic liver disease. Hepatology. 1992;15:637–44.

    Article  CAS  PubMed  Google Scholar 

  153. Parfitt AM, Simon LS, Villanueva AR, Krane SM. Procollagen type I carboxy-terminal extension peptide in serum as a marker of collagen biosynthesis in bone. Correlation with iliac bone formation rate and comparison with total alkaline phosphatase. J Bone Miner Res. 1987;2:427–36.

    Article  CAS  PubMed  Google Scholar 

  154. Digenis GE, Dombros NV, Christophoraki M, et al. Procollagen type-I in serum and dialysate of continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1993;13(Suppl 2):S480–5483.

    Article  PubMed  Google Scholar 

  155. Gerakis A, Apostolou T, Bagiatoudi G, Tzouganatou A, Margellos V, Nikolopoulou N, et al. Serum procollagen type I carboxy-terminal propeptide in CAPD and hemodialysis patients. Perit Dial Int. 1996;16(Suppl 1):S309–11.

    Article  PubMed  Google Scholar 

  156. Joffe P, Jensen LT. Type I and III procollagens in CAPD: markers of peritoneal fibrosis. In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, editors. Advances in peritoneal dialysis, vol. 7. Toronto: Peritoneal Dialysis Bulletin Inc.; 1991. p. 158–60.

    Google Scholar 

  157. Graff J, Joffé P, Fugleberg S, Jensen LT. Collagen markers in peritoneal dialysis patients. Adv Perit Dial. 1995;11:24–7.

    CAS  PubMed  Google Scholar 

  158. Del Peso G, Jimenez-Heffernan JA, Bajo MA, Aroeira LS, Aguilera A, Fernandez-Perpen A, et al. Epithelial-to-mesenchymal transition of mesothelial cells is an early event during peritoneal dialysis and is associated with high peritoneal transport. Kidney Int Suppl. 2008;108:S26–33.

    Article  Google Scholar 

  159. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119:1429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mizutani M, Ito Y, Mizuno M, et al. Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. Am J Physiol Renal Physiol. 2010;298:F721–33.

    Article  CAS  PubMed  Google Scholar 

  161. Siddique I, Curran SP, Ghayur A, Liu L, Shi W, Hoff CM, et al. Gremlin promotes peritoneal membrane injury in an experimental mouse model and is associated with increased solute transport in peritoneal dialysis patients. Am J Pathol. 2014;184: 2976–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rodrigues-Diez R, Aroeira LS, Orejudo M, Bajo MA, Heffernan JJ, Rodrigues-Diez RR, et al. IL-17A is a novel player in dialysis-induced peritoneal damage. Kidney Int. 2014;86:303–15.

    Article  CAS  PubMed  Google Scholar 

  163. Xiao J, Gong Y, Chen Y, Yu D, Wang X, Zhang X, et al. IL-6 promotes epithelial-to-mesenchymal transition of human peritoneal mesothelial cells possibly through the JAK2/STAT3 signaling pathway. Am J Physiol Renal Physiol. 2017;313:F310–8.

    Article  CAS  PubMed  Google Scholar 

  164. Cuccurullo M, Evangelista C, Vilasi A, Simeoni M, Avella F, Riccio E, et al. Proteomic analysis of peritoneal fluid of patients treated by peritoneal dialysis: effect of glucose concentration. Nephrol Dial Transplant. 2011;26:1990–9.

    Article  CAS  PubMed  Google Scholar 

  165. Carreras-Planella L, Soler-Majoral J, Rubio-Esteve C, Lozano-Ramos SI, Franquesa M, Bonet J, et al. Characterization and proteomic profile of extracellular vesicles from peritoneal dialysis efflux. PLoS One. 2017;12(5):e0176987.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Pearson LJ, Klaharn IY, Thongsawang B, Manuprasert W, Saejew T, Somparn P, et al. Multiple extracellular vesicle types in peritoneal dialysis effluent are prominent and contain known biomarkers. PLoS One. 2017;12:e0178601.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Strippoli R, Loureiro J, Moreno V, Benedicto I, Perez Lozano ML, Barreiro O, et al. Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis. EMBO Mol Med. 2015;7:102–23.

    Article  CAS  PubMed  Google Scholar 

  168. Ge Y, Xiao L, Chen X, Peng Y, Sun L, Liu F. MicroRNAs in peritoneal dialysis effluent are promising biomarkers for peritoneal fibrosis in peritoneal dialysis patients. Med Hypotheses. 2012;78:155–6.

    Article  CAS  PubMed  Google Scholar 

  169. Lopez-Anton M, Lambie M, Lopez-Cabrera M, Schmitt CP, Ruiz-Carpio V, Bartosova M, et al. miR-21 promotes fibrogenesis in peritoneal dialysis. Am J Pathol. 2017;187:1537–50.

    Article  CAS  PubMed  Google Scholar 

  170. Chen J, Kam-Tao P, Kwan BCH, Chow KM, Lai KB, Luk CCW, et al. Relation between MicroRNA expression in peritoneal dialysis effluent and peritoneal transport characteristics. Dis Markers. 2012;33: 35–42.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Che M, Shi T, Feng S, Li H, Zhang X, Feng N, et al. The MicroRNA-199a/214 cluster targets E-cadherin and claudin-2 and promotes high glucose-induced peritoneal fibrosis. J Am Soc Nephrol. 2017;28: 2459–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li X, Liu H, Sun L, Zhou X, Yuan X, Chen Y, et al. MicroRNA-302c modulates peritoneal dialysis-associated fibrosis by targeting connective tissue growth factor. J Cell Mol Med. 2019;23:2372–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ruiz-Carpio V, Sandoval P, Aguilera A, Albar-Vizcaino P, Perez-Lozano ML, Gonzalez-Mateo GT, et al. Genomic reprograming analysis of the mesothelial to mesenchymal transition identifies biomarkers in peritoneal dialysis patients. Sci Rep. 2017;7:44941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Fukudome K, Fujimoto S, Sato Y, Hisanaga S, Eto T. Peritonitis increases MMP-9 activity in peritoneal effluent from CAPD patients. Nephron. 2001;87:35–41.

    Article  CAS  PubMed  Google Scholar 

  175. De Boer A, Levi M, Reddingius RE, et al. Intraperitoneal hypercoagulation and hyperfibrinolysis is present in childhood peritonitis. Pediatr Nephrol. 1999;13:284–7.

    Article  PubMed  Google Scholar 

  176. Szeto CC, Poon P, Szeto CY, Wong TY, Lai KB, Li PK. Plasminogen activator inhibitor-1 4G/5G genetic polymorphism does not affect peritoneal transport characteristic. Am J Kidney Dis. 2002;39: 1061–7.

    Article  CAS  PubMed  Google Scholar 

  177. Tekstra J, Visser CE, Tuk CW, et al. Identification of the major chemokines that regulate cell influxes in peritoneal dialysis patients. J Am Soc Nephrol. 1996;7:2379–84.

    Article  CAS  PubMed  Google Scholar 

  178. Zemel D, Betjes MG, Dinkla C, Struijk DG, Krediet RT. Analysis of inflammatory mediators and peritoneal permeability to macromolecules shortly before the onset of overt peritonitis in patients treated with CAPD. Perit Dial Int. 1995;15:134–41.

    Article  CAS  PubMed  Google Scholar 

  179. Martikainen TA, Ekstrand AV, Honkanen EO, Teppo AM, Gronhagen-Riska C. Dialysate leukocytes, sICAM-1, hyaluronan and IL-6: predictors of outcome of peritonitis? Blood Purif. 2004;22:360–6.

    Article  CAS  PubMed  Google Scholar 

  180. Mizuno M, Suzuki Y, Higashide K, Sei Y, Iguchi D, Sakata F, et al. High levels of soluble C5b-9 complex in dialysis fluid may predict poor prognosis in peritonitis in peritoneal dialysis patients. PLoS One. 2017;12:e0169111.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Cho Y, Johnson DW, Vesey DA, Hawley CM, Pascoe EM, Clarke M, et al. Higher dialysate matrix metalloproteinase-2 levels are associated with peritoneal membrane dysfunction. Perit Dial Int. 2016;36:16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ziegler C, Torchia M, Grahame GR, Ferguson IA. Peritoneal surface-active material in continuous ambulatory peritoneal dialysis (CAPD) patients. Perit Dial Int. 1989;9:47–9.

    Article  CAS  PubMed  Google Scholar 

  183. Krack G, Viglino G, Cavalli PL, et al. Intraperitoneal administration of phosphatidylcholine improves ultrafiltration in continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1992;12:359–64.

    Article  CAS  PubMed  Google Scholar 

  184. Beavis J, Harwood JL, Coles GA, Williams JD. Intraperitoneal phosphatidylcholine levels in patients on continuous ambulatory peritoneal dialysis do not correlate with adequacy of ultrafiltration. J Am Soc Nephrol. 1993;3:1954–60.

    Article  CAS  PubMed  Google Scholar 

  185. Wakabayashi Y, Yamada K, Miura Y, Nakano H, Nishimura M, Tsuchida H, et al. Type III procollagen N-peptide and hyaluronate in serum and dialysate of CAPD patients. Nippon Jinzo Gakkai Shi. 1997;39:408–13.

    CAS  PubMed  Google Scholar 

  186. Yamagata K, Tomida C, Koyama A. Intraperitoneal hyaluronan production in stable continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1999;19:131–7.

    Article  CAS  PubMed  Google Scholar 

  187. Digenis GE, Dombros NV, Balaskas EV, et al. Procollagen-1 and collagen-1 in the serum and dialysate of CAPD patients. Changes over time. Perit Dial Int. 1995;15:371–4.

    Article  CAS  PubMed  Google Scholar 

  188. Hirahara I, Kusano E, Morishita Y, Inoue M, Akimoto T, Saito O, et al. Matrix metalloproteinase-2 as a superior biomarker for peritoneal deterioration in peritoneal dialysis. World J Nephrol. 2016; 5:204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Hirahara I, Inoue M, Okuda K, Ando Y, Muto S, Kusano E. The potential of matrix metalloproteinase-2 as a marker of peritoneal injury, increased solute transport, or progression to encapsulating peritoneal sclerosis during peritoneal dialysis – a multicentre study in Japan. Nephrol Dial Transplant. 2007;22:560–7.

    Article  CAS  PubMed  Google Scholar 

  190. Hao N, Chiou TT, Wu CH, Lei YY, Liang PL, Chao MC, et al. Longitudinal changes of PAI-1, MMP-2, and VEGF in peritoneal effluents and their associations with peritoneal small-solute transfer rate in new peritoneal dialysis patients. Biomed Res Int. 2019;2019:2152584.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Szeto CC, Wong TY, Lai KB, Chow KM, Li PK. The role of vascular endothelial growth factor in peritoneal hyperpermeability during CAPD-related peritonitis. Perit Dial Int. 2002;22:265–7.

    Article  CAS  PubMed  Google Scholar 

  192. Pecoits-Filho R, Araujo MR, Lindholm B, Stenvinkel P, Abensur H, Romao JE Jr, et al. Plasma and dialysate IL-6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol Dial Transplant. 2002;17:1480–6.

    Article  CAS  PubMed  Google Scholar 

  193. Zweers MM, Struijk DG, Smit W, Krediet RT. Vascular endothelial growth factor in peritoneal dialysis: a longitudinal follow-up. J Lab Clin Med. 2001;137:125–32.

    Article  CAS  PubMed  Google Scholar 

  194. Szeto CC, Chow KM, Poon P, Szeto CY, Wong TY, Li PK. Genetic polymorphism of VEGF: impact on longitudinal change of peritoneal transport and survival of peritoneal dialysis patients. Kidney Int. 2004;65:1947–55.

    Article  CAS  PubMed  Google Scholar 

  195. Cho Y, Johnson DW, Vesey DA, Hawley CM, Pascoe EM, Clarke M, et al. Dialysate interleukin-6 predicts increasing peritoneal solute transport rate in incident peritoneal dialysis patients. BMC Nephrol. 2014;15:8.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Blom IE, Zweers MM, Krediet RT, et al. Connective tissue growth factor expression, net ultrafiltration rate and duration of peritoneal dialysis treatment. J Am Soc Nephrol. 2001;12:423–4A.

    Google Scholar 

  197. Shi Y, Yan H, Yuan J, Zhang H, Huang J, Ni Z, et al. Different patterns of inflammatory and angiogenic factors are associated with peritoneal small solute transport and peritoneal protein clearance in peritoneal dialysis patients. BMC Nephrol. 2018;19:119.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Barreto DL, Coester AM, Heijne A, de Waart DR, Hoek FJ, Krediet RT. Soluble VCAM-1 and E-selectin in PD patients: the additive value of the free diffusion coefficient in the assessment of local peritoneal production. Perit Dial Int. 2015;35:90–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Igarashi Y, Morishita Y, Yoshizawa H, Imai R, Imai T, Hirahara I, et al. The association between soluble intercellular adhesion molecule-1 levels in drained dialysate and peritoneal injury in peritoneal dialysis. Ren Fail. 2017;39(1):392–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ossorio M, Bajo MA, Del Peso G, Martinez V, Fernandez M, Castro MJ, et al. Sustained low peritoneal effluent CCL18 levels are associated with preservation of peritoneal membrane function in peritoneal dialysis. PLoS One. 2017;12:e0175835.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Corciulo S, Nicoletti MC, Mastrofrancesco L, Milano S, Mastrodonato M, Carmosino M, et al. AQP1-containing exosomes in peritoneal dialysis effluent as biomarker of dialysis efficiency. Cells. 2019;8:330. https://doi.org/10.3390/cells8040330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Joffe P, Jensen LT. Type I and III procollagens in CAPD: markers of peritoneal fibrosis. Adv Perit Dial. 1991;7:158–60.

    CAS  PubMed  Google Scholar 

  203. Barreto DL, Coester AM, Struijk DG, Krediet RT. Can effluent matrix metalloproteinase 2 and plasminogen activator inhibitor 1 be used as biomarkers of peritoneal membrane alterations in peritoneal dialysis patients? Perit Dial Int. 2013;33:529–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lopes Barreto D, Struijk DG, Krediet RT. Peritoneal effluent MMP-2 and PAI-1 in encapsulating peritoneal sclerosis. Am J Kidney Dis. 2015;65:748–53.

    Article  CAS  PubMed  Google Scholar 

  205. Sampimon DE, Korte MR, Barreto DL, Vlijm A, de Waart R, Struijk DG, et al. Early diagnostic markers for encapsulating peritoneal sclerosis: a case-control study. Perit Dial Int. 2010;30(2):163–9.

    Article  CAS  PubMed  Google Scholar 

  206. Abrahams AC, Habib SM, Dendooven A, Riser BL, van der Veer JW, Toorop RJ, et al. Patients with encapsulating peritoneal sclerosis have increased peritoneal expression of connective tissue growth factor (CCN2), transforming growth factor-beta1, and vascular endothelial growth factor. PLoS One. 2014;9:e112050.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Goodlad C, Tam FW, Ahmad S, Bhangal G, North BV, Brown EA. Dialysate cytokine levels do not predict encapsulating peritoneal sclerosis. Perit Dial Int. 2014;34:594–604.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Zavvos V, Buxton AT, Evans C, Lambie M, Davies SJ, Topley N, et al. A prospective, proteomics study identified potential biomarkers of encapsulating peritoneal sclerosis in peritoneal effluent. Kidney Int. 2017;92:988–1002.

    Article  CAS  PubMed  Google Scholar 

  209. Kim YL, Do J, Park SH, Cho K, Park J, Yoon K, Cho DK, Lee EG, Kim IS. Low glucose degradation products dialysis solution modulates the levels of surrogate markers of peritoneal inflammation, integrity, and angiogenesis: preliminary report. Nephrology (Carlton). 2003;8(Suppl):S28–32.

    Article  CAS  PubMed  Google Scholar 

  210. Do JY, Kim YL, Park JW, Cho KH, Kim TW, Yoon KW, et al. The effect of low glucose degradation product dialysis solution on epithelial-to-mesenchymal transition in continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 2005;25(Suppl 3):S22–5.

    Article  CAS  PubMed  Google Scholar 

  211. Fernandez-Perpen A, Perez-Lozano ML, Bajo MA, Albar-Vizcaino P, Sandoval Correa P, del Peso G, et al. Influence of bicarbonate/low-GDP peritoneal dialysis fluid (BicaVera) on in vitro and ex vivo epithelial-to-mesenchymal transition of mesothelial cells. Perit Dial Int. 2012;32:292–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Herzog R, Boehm M, Unterwurzacher M, Wagner A, Parapatics K, Majek P, et al. Effects of alanyl-glutamine treatment on the peritoneal dialysis effluent proteome reveal pathomechanism-associated molecular signatures. Mol Cell Proteomics. 2018;17: 516–32.

    Article  CAS  PubMed  Google Scholar 

  213. Feit J, Richard C, McCaffrey C, Levy M. Peritoneal clearance of creatinine and inulin in dogs: effect of splanchnic vasodilators. Kidney Int. 1979;16:459–69.

    Article  Google Scholar 

  214. Miller FN, Nolph KD, Harris PD, Rubin J, Wiegman DL, Joshua IG, Twardowski ZJ, Ghods AJ. Microvascular and clinical effects of altered peritoneal dialysis solutions. Kidney Int. 1979;15:630–9.

    Article  CAS  PubMed  Google Scholar 

  215. Verfier C, Brunschvicg O, Le Charpentier Y, Lavergne A, Vantelon J. Structural and ultrastructural peritoneal membrane changes and permeability alterations during continuous ambulatory peritoneal dialysis. Proc Eur Dial Transplant Assoc. 1981; 18:199–205.

    Google Scholar 

  216. Rubin J, Herrera GA, Collins D. An autopsy study of the peritoneal cavity from patients on continuous ambulatory peritoneal dialysis. Am J Kidney Dis. 1991;18:97–102.

    Article  CAS  PubMed  Google Scholar 

  217. Flessner MF, Henegar J, Bigler S, Genous L. Is the peritoneum a significant transport barrier in peritoneal dialysis? Perit Dial Int. 2003;23:542–9.

    Article  CAS  PubMed  Google Scholar 

  218. Levick JR. Flow through interstitium and fibrous matrices. Q J Exp Physiol. 1987;72:409–38.

    Article  CAS  PubMed  Google Scholar 

  219. Nakamura Y, Wayland H. Macromolecular transport in the cat mesentery. Microvasc Res. 1975;9:1–21.

    Article  CAS  PubMed  Google Scholar 

  220. Fox JR, Wayland H. Interstitial diffusion of macromolecules in the rat mesentery. Microvasc Res. 1979;18:255–76.

    Article  CAS  PubMed  Google Scholar 

  221. Collins JM. Inert gas exchange of subcutaneous and intraperitoneal gas pockets in piglets. Respir Physiol. 1981;46:391–404.

    Article  CAS  PubMed  Google Scholar 

  222. Flessner MF, Fenstermacher JD, Dedrick RL, Blasberg RG. A distributed model of peritoneal-plasma transport: tissue concentration gradients. Am J Physiol. 1985;248:F425–35.

    CAS  PubMed  Google Scholar 

  223. Wiig H, DeCarlo M, Sibley L, Renkin EM. Interstitial exclusion of albumin in rat tissues measured by a continuous infusion method. Am J Physiol. 1992;263:H1222–33.

    CAS  PubMed  Google Scholar 

  224. Hirszel P, Shea-Donohue T, Chakrabarti E, Montcalm E, Maher JF. The role of the capillary wall in restricting diffusion of macromolecules. Nephron. 1988;49:58–61.

    Article  CAS  PubMed  Google Scholar 

  225. Rippe B, Stelin S. How does peritoneal dialysis remove small and large molecular weight solutes? Transport pathways: fact and myth. Adv Perit Dial. 1991;7:13–8.

    Google Scholar 

  226. Popovich RP, Moncrief JW, Pyle WK. Transport kinetics. In: Nolph KD, editor. Peritoneal dialysis. Dordrecht: Kluwer Academic Publishers; 1989. p. 96–116.

    Chapter  Google Scholar 

  227. Lasrich M, Maher JM, Hirszel P, Maher JF. Correlation of peritoneal transport rates with molecular weight: a method for predicting clearances. ASAIO J. 1979;2:107–13.

    Google Scholar 

  228. Leypoldt JK, Parker HR, Frigon RP, Henderson LW. Molecular size dependence of peritoneal transport. J Lab Clin Med. 1987;110:207–16.

    CAS  PubMed  Google Scholar 

  229. Krediet RT, Zuyderhoudt FMJ, Boeschoten EW, Arisz L. Alterations in the peritoneal transport of water and solutes during peritonitis in continuous ambulatory peritoneal dialysis patients. Eur J Clin Invest. 1987;17:43–52.

    Article  CAS  PubMed  Google Scholar 

  230. Krediet RT, Boeschoten EW, Struijk DG, Arisz L. Differences in the peritoneal transport of water, solutes and proteins between dialysis with two- and with three- litre exchanges. Nephrol Dial Transplant. 1988;2:198–204.

    Google Scholar 

  231. Nolph KD, Miller F, Rubin J, Popovich R. New directions in peritoneal dialysis concepts and applications. Kidney Int. 1980;18:S111–6.

    Google Scholar 

  232. Nolph KD, Twardowski ZJ. The peritoneal dialysis system. In: Nolph KD, editor. Peritoneal dialysis. Dordrecht: Kluwer Academic Publishers; 1989. p. 13–27.

    Chapter  Google Scholar 

  233. McGary TJ, Nolph KD, Rubin J. In vitro simulations of peritoneal dialysis. J Lab Clin Med. 1980;96: 148–57.

    CAS  PubMed  Google Scholar 

  234. Rudoy J, Kohan R, Ben-Ari J. Externally applied abdominal vibration as a method for improving efficiency in peritoneal dialysis. Nephron. 1987;46: 364–6.

    Article  CAS  PubMed  Google Scholar 

  235. Levitt MD, Kneip JM, Overdahl MC. Influence of shaking on peritoneal transport. Kidney Int. 1989;35:1145–50.

    Article  CAS  PubMed  Google Scholar 

  236. Krediet RT, Koomen GCM, Koopman MG, Hoek FJ, Struijk DG, Boeschoten EW, Arisz L. The peritoneal transport of serum proteins and neutral dextran in CAPD patients. Kidney Int. 1989;35:1064–72.

    Article  CAS  PubMed  Google Scholar 

  237. Rippe B, Stelin G. Simulations of peritoneal solute transport during CAPD. Application of two-pore formalism. Kidney Int. 1989;35:1234–44.

    Article  CAS  PubMed  Google Scholar 

  238. Gotloib L, Bar Sella P, Shustack A. Ruthenium-red-stained polyanionic fixed charges in peritoneal microvessels. Nephron. 1987;47:22–8.

    Article  CAS  PubMed  Google Scholar 

  239. Gotloib L, Shostack A, Jaichenko J. Ruthenium-red-stained anionic charges of rat and mice mesothelial cells and basal lamina: the peritoneum is a negatively charged dialyzing membrane. Nephron. 1988;48: 65–70.

    Article  CAS  PubMed  Google Scholar 

  240. Galdi P, Shostak A, Jaichenko J, Fudin R, Gotloib L. Protamine sulfate induces enhanced peritoneal permeability to proteins. Nephron. 1991;57: 45–51.

    Article  CAS  PubMed  Google Scholar 

  241. Krediet RT, Struijk DG, Koomen GCM, Boeschoten EW, Hoek FJ, Arisz L. The peritoneal transport of macromolecules in CAPD patients. Contrib Nephrol. 1991;89:161–74.

    Article  CAS  PubMed  Google Scholar 

  242. Krediet RT, Struijk DG, Zemel D, Koomen GC, Arisz L. The transport of macromolecules across the human peritoneum during CAPD. In: La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, editors. Peritoneal dialysis. Milan: Wichtige Editore; 1991. p. 61–9.

    Google Scholar 

  243. Krediet RT, Zemel D, Struijk DG, Koomen GCM, Arisz L. Individual characterization of the peritoneal restriction barrier to macromolecules. Adv Perit Dial. 1991;7:16–20.

    Google Scholar 

  244. Zemel D, Krediet RT, Koomen GCM, Struijk DG, Arisz L. Day to day variability of protein transport used as a method for the analysis of peritoneal permeability in continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1991;1:217–23.

    Article  Google Scholar 

  245. Morelle J, Sow A, Fustin CA, Fillee C, Garcia-Lopez E, Lindholm B, et al. Mechanisms of crystalloid versus colloid osmosis across the peritoneal membrane. J Am Soc Nephrol. 2018;29:1875–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Vink H, Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and leucocytes within mammalian capillaries. Circ Res. 1996;79:581–9.

    Article  CAS  PubMed  Google Scholar 

  247. Pannekeet MM, Mulder JB, Weening JJ, Struijk DG, Zweers MM, Krediet RT. Demonstration of aquaporin-CHIP in peritoneal tissue of uremic and CAPD patients. Perit Dial Int. 1996;16(Suppl 1):S54–7.

    Article  PubMed  Google Scholar 

  248. Carlsson O, Nielsen S, Zakaria el R, Rippe B. In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. Am J Physiol. 1996;271:H2254–62.

    CAS  PubMed  Google Scholar 

  249. Devuyst O, Nielsen S, Cosyns JP, et al. Aquaporin-1 and endothelial nitric oxide synthase expression in capillary endothelia of human peritoneum. Am J Physiol. 1998;275:H234–42.

    CAS  PubMed  Google Scholar 

  250. Rippe B, Carlsson O. Role of transcellular water channels in peritoneal dialysis. Perit Dial Int. 1999;19(Suppl 2):S95–101.

    Article  PubMed  Google Scholar 

  251. Krediet RT. The effective lymphatic absorption rate is an accurate and useful concept in the physiology of peritoneal dialysis. Perit Dial Int. 2004;24:309–13.

    Article  PubMed  Google Scholar 

  252. Flessner M. Effective lymphatic absorption rate is not a useful or accurate term to use in the physiology of peritoneal dialysis. Perit Dial Int. 2004;24:313–6.

    Article  PubMed  Google Scholar 

  253. Smit W, Schouten N, van den Berg N, Langedijk MJ, Struijk DG, Krediet RT. Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study. Perit Dial Int. 2004;24:562–70.

    Article  PubMed  Google Scholar 

  254. Krediet RT, Lindholm B, Rippe B. Pathophysiology of peritoneal membrane failure. Perit Dial Int. 2000;20(Suppl 4):S22–42.

    Article  PubMed  Google Scholar 

  255. Mujais S, Nolph K, Gokal R, Blake P, Burkart J, Coles G, et al. Evaluation and management of ultrafiltration problems in peritoneal dialysis. International Society for Peritoneal Dialysis Ad Hoc Committee on Ultrafiltration Management in Peritoneal Dialysis. Perit Dial Int. 2000;20(Suppl 4):S5–21.

    Article  PubMed  Google Scholar 

  256. Rippe B, Venturoli D. Simulations of osmotic ultrafiltration failure in CAPD using a serial three-pore membrane/fiber matrix model. Am J Physiol Renal Physiol. 2007;292:F1035–43.

    Article  CAS  PubMed  Google Scholar 

  257. Morelle J, Sow A, Hautem N, Bouzin C, Crott R, Devuyst O, et al. Interstitial fibrosis restricts osmotic water transport in encapsulating peritoneal sclerosis. J Am Soc Nephrol. 2015;26:2521–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Sampimon DE, Barreto DL, Coester AM, Struijk DG, Krediet RT. The value of osmotic conductance and free water transport in the prediction of encapsulating peritoneal sclerosis. Adv Perit Dial. 2014;30:21–6.

    PubMed  Google Scholar 

  259. Barreto DL, Sampimon DE, Struijk DG, Krediet RT. Early detection of imminent encapsulating peritoneal sclerosis: free water transport, selected effluent proteins, or both? Perit Dial Int. 2019;39:83–9.

    Article  CAS  PubMed  Google Scholar 

  260. La Milia V, Longhi S, Sironi E, Pontoriero G. The peritoneal sieving of sodium: a simple and powerful test to rule out the onset of encapsulating peritoneal sclerosis in patients undergoing peritoneal dialysis. J Nephrol. 2018;31:137–45.

    Article  PubMed  Google Scholar 

  261. Monquil MC, Imholz AL, Struijk DG, Krediet RT. Does impaired transcellular water transport contribute to net ultrafiltration failure during CAPD? Perit Dial Int. 1995;15:42–8.

    Article  CAS  PubMed  Google Scholar 

  262. Goffin E, Combet S, Jamar F, Cosyns JP, Devuyst O. Expression of aquaporin-1 in a long-term peritoneal dialysis patient with impaired transcellular water transport. Am J Kidney Dis. 1999;33:383–8.

    Article  CAS  PubMed  Google Scholar 

  263. Mactier RA, Khanna R, Twardowski ZJ, Nolph KD. Ultrafiltration failure in continuous ambulatory peritoneal dialysis due to excessive peritoneal cavity lymphatic absorption. Am J Kidney Dis. 1987;10:461–6.

    Article  CAS  PubMed  Google Scholar 

  264. Grollman A, Turner LB, Mclean JA. Intermittent peritoneal lavage in nephrectomized dogs and its application to the human being. Arch Intern Med. 1951; 87:379–90.

    Article  CAS  Google Scholar 

  265. Boen ST. Peritoneal dialysis: a clinical study of factors governing its effectiveness. Thesis, University of Amsterdam; 1959. p. 26.

    Google Scholar 

  266. Boen ST. Kinetics of peritoneal dialysis. Medicine (Baltimore). 1961;40:243–87.

    Article  Google Scholar 

  267. Verger C, Brunschvicg O, Le Chatpentier Y, Lavergne A, Vantelon J. Peritoneal structure alterations on CAPD. In: Gahl GM, Kessel M, Nolph KD, editors. Advances in peritoneal dialysis. Amsterdam: Exerpta Medica; 1981. p. 10–5.

    Google Scholar 

  268. Twardowski ZJ, Nolph KD, Khanna R, Prowant BF, Ryan LP, Moore HL, Nielsen MP. Peritoneal equilibration test. Perit Dial Bull. 1987;7:138–47.

    Article  Google Scholar 

  269. Warady BA, Alexander SR, Hossli S, Vonesh E, Geary D, Watkins S, Salusky IB, Kohaut EC. Peritoneal membrane transport function in children receiving long-term dialysis. J Am Soc Nephrol. 1996;7:2385–91.

    Article  CAS  PubMed  Google Scholar 

  270. Davies SJ, Brown B, Bryan J, Russell GI. Clinical evaluation of the peritoneal equilibration test: a population-based study. Nephrol Dial Transplant. 1993;8:64–70.

    Article  CAS  PubMed  Google Scholar 

  271. Wang T, Heimburger O, Waniewski J, Bergstrom J, Lindholm B. Increased peritoneal permeability is associated with decreased fluid and small-solute removal and higher mortality in CAPD patients. Nephrol Dial Transplant. 1998;13:1242–9.

    Article  CAS  PubMed  Google Scholar 

  272. Heimburger O, Waniewski J, Werynski IA, Lindholm B. A quantitative description of solute and fluid transport during peritoneal dialysis. Kidney Int. 1992;41:1320–32.

    Article  CAS  PubMed  Google Scholar 

  273. Heimburger O, Waniewski J, Werynski A, Park MS, Lindholm B. Dialysate to plasma solute concentration (D/P) versus peritoneal transport parameters in CAPD. Nephrol Dial Transplant. 1994;9:47–59.

    CAS  PubMed  Google Scholar 

  274. Smit W, Langedijk MJ, Schouten N, van den Berg N, Struijk DG, Krediet RT. A comparison between 1.36% and 3.86% glucose dialysis solution for the assessment of peritoneal membrane function. Perit Dial Int. 2000;20:734–41.

    Article  CAS  PubMed  Google Scholar 

  275. Pride ET, Gustafson J, Graham A, Spainhour L, Mauck V, Brown P, Burkart JM. Comparison of a 2.5% and a 4.25% dextrose peritoneal equilibration test. Perit Dial Int. 2002;22:365–70.

    Article  CAS  PubMed  Google Scholar 

  276. Cara M, Virga G, Mastrosimone S, Girotto A, Rossi V, D’Angelo A, Bonfante L. Comparison of peritoneal equilibration test with 2.27% and 3.86% glucose dialysis solution. J Nephrol. 2005;18:67–71.

    CAS  PubMed  Google Scholar 

  277. Lilaj T, Vychytil A, Schneider B, Horl WH, Haag-Weber M. Influence of the preceding exchange on peritoneal equilibration test results: a prospective study. Am J Kidney Dis. 1999;34:247–53.

    Article  CAS  PubMed  Google Scholar 

  278. Twardowski ZJ, Prowant BF, Moore HL, Lou LC, White E, Farris K. Short peritoneal equilibration test: impact of preceding dwell time. Adv Perit Dial. 2003;19:53–8.

    PubMed  Google Scholar 

  279. Figueiredo AE, Conti A, Poli de Figueiredo CE. Influence of the preceding exchange on peritoneal equilibration test results. Adv Perit Dial. 2002; 18:75–7.

    CAS  PubMed  Google Scholar 

  280. Lilaj T, Dittrich E, Puttinger H, Schneider B, Haag-Weber M, Horl WH, Vychytil A. A preceding exchange with polyglucose versus glucose solution modifies peritoneal equilibration test results. Am J Kidney Dis. 2001;38:118–26.

    Article  CAS  PubMed  Google Scholar 

  281. Mahon A, Fan SL. Accuracy of ultrafiltration volume measurements for patients on peritoneal dialysis. Perit Dial Int. 2005;25:92–3.

    Article  CAS  PubMed  Google Scholar 

  282. La Milia V, Pozzoni P, Crepaldi M, Locatelli F. Overfill of peritoneal dialysis bags as a cause of underestimation of ultrafiltration failure. Perit Dial Int. 2006;26:503–5.

    Article  PubMed  Google Scholar 

  283. Imholz AL, Koomen GC, Struijk DG, Arisz L, Krediet RT. Residual volume measurements in CAPD patients with exogenous and endogenous solutes. Adv Perit Dial. 1992;8:33–8.

    CAS  PubMed  Google Scholar 

  284. Westra WM, Smit W, Zweers MM, Struijk DG, Krediet RT. Diffusion correction of sodium sieving applicable in a peritoneal equilibration test. Adv Perit Dial. 2003;19:6–9.

    PubMed  Google Scholar 

  285. Cnossen TT, Smit W, Konings CJA, Kooman JP, Leunissen KLM, Krediet RT. Peritoneal transport and ultrafiltration quantification of free water transport during the peritoneal equilibrium test. Perit Dial Int. 2009;29(5):523–7.

    Article  PubMed  Google Scholar 

  286. Twardowski ZJ. PET- a simpler approach for determining prescriptions for adequate dialysis therapy. Adv Perit Dial. 1990;6:186–91.

    CAS  PubMed  Google Scholar 

  287. Adcock A, Fox K, Walker P, Raymond K. Clinical experience and comparative analysis of the standard and fast peritoneal equilibration tests (PET). Adv Perit Dial. 1992;8:59–61.

    CAS  PubMed  Google Scholar 

  288. La Milia V, Di Filippo S, Crepaldi M, Del Vecchio L, Dell’Oro C, Andrulli S, Locatelli F. Mini-peritoneal equilibration test: a simple and fast method to assess free water and small solute transport across the peritoneal membrane. Kidney Int. 2005;68:840–6.

    Article  PubMed  Google Scholar 

  289. Bernardo AP, Bajo MA, Santos O, et al. Two-in-one protocol: simultaneous small-pore and ultrasmall-pore peritoneal transport quantification. Perit Dial Int. 2012;32(5):537–44.

    Article  PubMed  PubMed Central  Google Scholar 

  290. Cano F, Rojo A, Azocar M, Ibacache MJ, Delucchi A, Ugarte F, et al. The mini-PET in pediatric peritoneal dialysis: a useful tool to predict volume overload? Pediatr Nephrol. 2013;28:1121–6.

    Article  PubMed  Google Scholar 

  291. Imholz AL, Koomen GC, Struijk DG, Arisz L, Krediet RT. Fluid and solute transport in CAPD patients using ultralow sodium dialysate. Kidney Int. 1994;46:333–40.

    Article  CAS  PubMed  Google Scholar 

  292. Verger C. How to use the peritoneum as a dialysis membrane. Methods of surveillance, criteria of efficacy and longevity as a dialysis membrane, consequences with respect to techniques of peritoneal dialysis. Nephrologie. 1995;16:19–31.

    CAS  PubMed  Google Scholar 

  293. Fischbach M, Mengus L, Birmele B, Hamel G, Simeoni U, Geisert J. Solute equilibration curves, crossing time for urea and glucose during peritoneal dialysis: a function of age in children. Adv Perit Dial. 1991;7:262–5.

    CAS  PubMed  Google Scholar 

  294. Fischbach M, Lahlou A, Eyer D, Desprez P, Geisert J. Determination of individual ultrafiltration time (APEX) and purification phosphate time by peritoneal equilibration test: application to individual peritoneal dialysis modality prescription in children. Perit Dial Int. 1996;16(Suppl 1):S557–60.

    Article  PubMed  Google Scholar 

  295. La Milia V, Limardo M, Virga G, Crepaldi M, Locatelli F. Simultaneous measurement of peritoneal glucose and free water osmotic conductances. Kidney Int. 2007;72:643–50.

    Article  PubMed  Google Scholar 

  296. Clause AL, Keddar M, Crott R, Darius T, Fillee C, Goffin E, et al. A large intraperitoneal residual volume hampers adequate volumetric assessment of osmotic conductance to glucose. Perit Dial Int. 2018;38:356–562.

    Article  CAS  PubMed  Google Scholar 

  297. Bouts AH, Davin JC, Groothoff JW, Van Amstel SP, Zweers MM, Krediet RT. Standard peritoneal permeability analysis in children. J Am Soc Nephrol. 2000;11:943–50.

    Article  PubMed  Google Scholar 

  298. Pannekeet MM, Imholz AL, Struijk DG, Koomen GC, Langedijk MJ, Schouten N, et al. The standard peritoneal permeability analysis: a tool for the assessment of peritoneal permeability characteristics in CAPD patients. Kidney Int. 1995;48:866–75.

    Article  CAS  PubMed  Google Scholar 

  299. Smit W, van Dijk P, Langedijk MJ, Schouten N, van den Berg N, Struijk DG, et al. Peritoneal function and assessment of reference values using a 3.86% glucose solution. Perit Dial Int. 2003;23:440–9.

    Article  CAS  PubMed  Google Scholar 

  300. Smit W, de Waart DR, Struijk DG, Krediet RT. Peritoneal transport characteristics with glycerol-based dialysate in peritoneal dialysis. Perit Dial Int. 2000;20:557–65.

    Article  CAS  PubMed  Google Scholar 

  301. Struijk DG, Krediet RT, Koomen GC, Boeschoten EW, Hoek FJ, Arisz L. A prospective study of peritoneal transport in CAPD patients. Kidney Int. 1994;45:1739–44.

    Article  CAS  PubMed  Google Scholar 

  302. Krediet RT, Struijk DG, Koomen GCM, Arisz L. Peritoneal fluid kinetics during CAPD measured with intraperitoneal dextran 70. ASAIO Trans. 1991;37:662–7.

    CAS  PubMed  Google Scholar 

  303. Parikova A, Smit W, Struijk DG, Zweers MM, Krediet RT. The contribution of free water transport and small pore transport to the total fluid removal in peritoneal dialysis. Kidney Int. 2005;68:1849–56.

    Article  PubMed  Google Scholar 

  304. Zweers MM, Imholz AL, Struijk DG, Krediet RT. Correction of sodium sieving for diffusion from the circulation. Adv Perit Dial. 1999;15:65–72.

    CAS  PubMed  Google Scholar 

  305. Rocco MV, Jordan JR, Burkart JM. Determination of peritoneal transport characteristics with 24-hour dialysate collections: dialysis adequacy and transport test. J Am Soc Nephrol. 1994;5:1333–8.

    Article  CAS  PubMed  Google Scholar 

  306. Rocco MV, Jordan JR, Burkart JM. 24-hour dialysate collection for determination of peritoneal membrane transport characteristics: longitudinal follow-up data for the dialysis adequacy and transport test (DATT). Perit Dial Int. 1996;16:590–3.

    Article  CAS  PubMed  Google Scholar 

  307. Vonesh EF, Keshaviah PR. Applications in kinetic modeling using PD ADEQUEST. Perit Dial Int. 1997;17(Suppl 2):S119–25.

    Article  PubMed  Google Scholar 

  308. Stelin G, Rippe B. A phenomenological interpretation of the variation in dialysate volume with dwell time in CAPD. Kidney Int. 1990;38:465–72.

    Article  CAS  PubMed  Google Scholar 

  309. Warady BA, Watkins SL, Fivush BA, Andreoli SP, Salusky I, Kohaut EC, Vonesh EF. Validation of PD Adequest 2.0 for pediatric dialysis patients. Pediatr Nephrol. 2001;16:205–11.

    Article  CAS  PubMed  Google Scholar 

  310. Vonesh EF, Story KO, O’Neill WT. A multinational clinical validation study of PD ADEQUEST 2.0. PD ADEQUEST International Study Group. Perit Dial Int. 1999;19:556–71.

    Article  CAS  PubMed  Google Scholar 

  311. Vonesh EF, Story KO, Douma CE, Krediet RT. Modeling of icodextrin in PD Adequest 2.0. Perit Dial Int. 2006;26:475–81.

    Article  CAS  PubMed  Google Scholar 

  312. Haraldsson B. Assessing the peritoneal dialysis capacities of individual patients. Kidney Int. 1995;47:1187–98.

    Article  CAS  PubMed  Google Scholar 

  313. Imai H, Satoh K, Ohtani H, Hamai K, Haseyama T, Komatsuda A, Miura AB. Clinical application of the Personal Dialysis Capacity (PDC) test: serial analysis of peritoneal function in CAPD patients. Kidney Int. 1998;54(2):546–53.

    Article  CAS  PubMed  Google Scholar 

  314. Schaefer F, Haraldsson B, Haas S, Simkova E, Feber J, Mehls O. Estimation of peritoneal mass transport by three-pore model in children. Kidney Int. 1998;54:1372–9.

    Article  CAS  PubMed  Google Scholar 

  315. Van Biesen W, Carlsson O, Bergia R, Brauner M, Christensson A, Genestier S, Haag-Weber M, Heaf J, Joffe P, Johansson AC, Morel B, Prischl F, Verbeelen D, Vychytil A. Personal dialysis capacity (PDC(TM)) test: a multicentre clinical study. Nephrol Dial Transplant. 2003;18:788–96.

    Article  PubMed  Google Scholar 

  316. Johansson AC, Haraldsson B. Physiological properties of the peritoneum in an adult peritoneal dialysis population over a three-year period. Perit Dial Int. 2006;26:482–9.

    Article  PubMed  Google Scholar 

  317. Gotch FA, Lipps BJ, Keen ML, Panlilio F. Computerized urea kinetic modeling to prescribe and monitor delivered Kt/V (pKt/V, dKt/V) in peritoneal dialysis. Fresenius Randomized Dialysis Prescriptions and Clinical Outcome Study (RDP/CO). Adv Perit Dial. 1996;12:43–5.

    CAS  PubMed  Google Scholar 

  318. Gotch FA, Lipps BJ. PACK PD: a urea kinetic modeling computer program for peritoneal dialysis. Perit Dial Int. 1997;17(Suppl 2):S126–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk G. Struijk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Struijk, D.G., Khanna, R. (2023). Monitoring the Functional Status of the Peritoneum. In: Khanna, R., Krediet, R.T. (eds) Nolph and Gokal's Textbook of Peritoneal Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-030-62087-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62087-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62086-8

  • Online ISBN: 978-3-030-62087-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics