Skip to main content

Pharmacokinetic and Pharmacodynamic Principles

  • Reference work entry
  • First Online:
NeuroPsychopharmacotherapy

Abstract

This chapter summarizes the pharmacokinetic principles that are essential in everyday clinical practice: Whenever initiating a dosage, changing a dosage, or upon cessation of a treatment, the new steady state of the medication (including its de facto elimination) is not reached before 4 elimination half-lives. Many neuropsychiatric medications have elimination half-lives around 24 h, so the clinician has to wait at least 4 days until the new effect intensity can be expected. On pharmacologic principle, medications with longer elimination half-lives should be preferred because their concentrations fluctuate less, producing less variation in effect strength and carrying a lower risk of adverse drug reactions (ADRs). With respect to pharmacodynamics, clinical studies in psychiatric institutions have been notoriously poor in demonstrating a relationship between the concentration of the prescribed medication and its effect on psychiatric symptoms. This chapter identifies the very likely reasons for this shortcoming of clinical trials: Concentration-effect relationships becomes less and less clear-cut as one proceeds from simple outcomes that are very much upstream in the biologic chain of events, for example, receptor occupancy or prolactin blood concentration, to a multifactored outcome such as symptom improvement. Investigators have to contend with “signal noise” contributed by placebo responders, placebo deteriorators, and nonresponders, especially as one moves from single center to multicenter trials. This chapter ends with a study design checklist to improve clinical trials investigating concentration-effect relationships of neuropsychiatric medications. With respect to the pharmacologic targets of neuropsychotropic medications (receptors, monoamine transporters, etc.), the reader is referred to the chapter “Adverse Drug Reactions, Intoxications and Interactions of Neuropsychotropic Medications”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

▮:

For reasons of easier accessibility through the search function of softwares, hyphens or subscripts are given in the text. Therefore, the 5HT1A receptor is given as “5HT1A receptor, or the compound “MK-801” simply as “MK801.”

5HT:

5-hydroxytryptamine = serotonin

5HT2A:

Serotonin receptor, subtype 2A = 5HT1A receptor = 5HT2A receptor

5HTT:

Serotonin transporter

ADR:

Adverse drug reaction

BPRS:

Brief psychiatric rating scale

CGI-I:

Clinical global impressions, improvement scale

D1, D2, etc.:

Dopamine receptor, subtype 1 = D1 receptor = D1 receptor

DAT:

Dopamine transporter

HAMD:

Hamilton depression rating scale

HRSD:

Hamilton rating scale for depression

NARI:

Noradrenaline reuptake inhibitor (reboxetine)

NaSSA:

Noradrenergic and specific serotonergic antidepressant (mirtazapine, mianserin)

NAT:

Noradrenaline transporter, same as NET

PANSS:

Positive and negative syndrome scale

SERT:

Serotonin transporter

SERTI:

Serotonin transporter inhibitor, see also SSRI

SGA:

Second generation antipsychotic

SPC:

Summary of product characteristics

SNRI:

Serotonin norepinephrine reuptake inhibitor (e.g., duloxetine, venlafaxine)

SSRI:

Selective serotonin reuptake inhibitor (e.g., escitalopram)

References

  • Bauer LA. Applied clinical pharmacokinetics. New York: McGraw Hill; 2008.

    Google Scholar 

  • Beasley CM Jr, Sanger T, Satterlee W, Tollefson G, Tran P, Hamilton S. Olanzapine versus placebo: results of a double-blind, fixed-dose olanzapine trial. Psychopharmacology. 1996a;124:159–67.

    Article  CAS  PubMed  Google Scholar 

  • Beasley CM Jr, Tollefson G, Tran P, Satterlee W, Sanger T, Hamilton S. Olanzapine versus placebo and haloperidol: acute phase results of the north American double-blind olanzapine trial. Neuropsychopharmacology. 1996b;14:111–23.

    Article  CAS  PubMed  Google Scholar 

  • Brunton LL, Hilal-Dandan R, Knollmann BC. Goodman and Gilman’s the pharmacological basis of therapeutics. 13th ed. New York: McGraw-Hill; 2017.

    Google Scholar 

  • Callaghan JT, Bergstrom RF, Ptak LR, Beasley CM. Olanzapine. Pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet. 1999;37:177–93.

    Article  CAS  PubMed  Google Scholar 

  • Citrome L, Stauffer VL, Chen L, Kinon BJ, Kurtz DL, Jacobson JG, Bergstrom RF. Olanzapine plasma concentrations after treatment with 10, 20, and 40 mg/d in patients with schizophrenia: an analysis of correlations with efficacy, weight gain, and prolactin concentration. J Clin Psychopharmacol. 2009;29:278–83.

    Article  CAS  PubMed  Google Scholar 

  • De Donatis D, Florio V, Porcelli S, Saria A, Mercolini L, Serretti A, Conca A. Duloxetine plasma level and antidepressant response. Prog Neuro-Psychopharmacol Biol Psychiatry. 2019;92:127–32.

    Article  Google Scholar 

  • Eggart V, Hiemke C, Zernig G. “There is no dose-response relationship in psychopharmacotherapy” vs “pharmacotherapy in psychiatry is based on ligand-receptor interaction”: a unifying hypothesis and the need for plasma concentration based clinical trials. Psychopharmacology. 2011;217:297–300.

    Article  CAS  PubMed  Google Scholar 

  • Fellows L, Ahmad F, Castle DJ, Dusci LJ, Bulsara MK, Ilett KF. Investigation of target plasma concentration-effect relationships for olanzapine in schizophrenia. Ther Drug Monit. 2003;25:682–9.

    Article  CAS  PubMed  Google Scholar 

  • Florio V, Porcelli S, Saria A, Serretti A, Conca A. Escitalopram plasma levels and antidepressant response. Eur Neuropsychopharmacol. 2017;27:940–4.

    Article  CAS  PubMed  Google Scholar 

  • Grunder G, Fellows C, Janouschek H, Veselinovic T, Boy C, Brocheler A, Kirschbaum KM, Hellmann S, Spreckelmeyer KM, Hiemke C, Rosch F, Schaefer WM, Vernaleken I. Brain and plasma pharmacokinetics of aripiprazole in patients with schizophrenia: an [18F]fallypride PET study. Am J Psychiatry. 2008;165:988–95.

    Article  PubMed  Google Scholar 

  • Hiemke C. Concentration-effect relationships of psychoactive drugs and the problem to calculate therapeutic reference ranges. Ther Drug Monit. 2019;41:174–9.

    Article  PubMed  Google Scholar 

  • Hiemke C, Bergemann N, Broich K, Clement HW, Conca A, Deckert J, Dietmaier O, Domschke K, Eckermann G, Egberts K, Fric M, Gerlach M, Greiner C, Grunder G, Haen E, Havemann-Reinecke U, Janssen G, Jaquenoud Sirot E, Laux G, Messer T, Mossner R, Muller MJ, Paulzen M, Pfuhlmann B, Riederer P, Saria A, Schoppek B, Schwarz M, Stegmann B, Steimer W, Stingl J, Uhr M, Ulrich S, Unterecker S, Waschgler R, Zernig G, Zurek G, Baumann P. AGNP consensus guidelines for therapeutic drug monitoring in psychiatry and neurology: update 2017. Pharmacopsychiatry. 2018;51:9–62.

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Zipursky RB, Remington G, Jones C, Dasilva J, Wilson AA, Houle S. 5-HT2 and D2 receptor occupancy of olanzapine in schizophrenia: a PET investigation. Am J Psychiatry. 1998;155:921–8.

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Zipursky R, Jones C, Remington G, Houle S. Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry. 2000;157:514–20.

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann A, Wartelsteiner F, Yalcin-Siedentopf N, Baumgartner S, Biedermann F, Edlinger M, Kemmler G, Rettenbacher MA, Rissanen TT, Widschwendter CG, Zernig G, Fleischhacker WW, Hofer A. Changes in psychopathology in schizophrenia patients starting treatment with new-generation antipsychotics: therapeutic drug monitoring in a naturalistic treatment setting. Eur Neuropsychopharmacol. 2016;26:717–28.

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann A, Post F, Yalcin-Siedentopf N, Baumgartner S, Biedermann F, Edlinger M, Kemmler G, Rettenbacher MA, Widschwendter CG, Zernig G, Fleischhacker WW, Hofer A. Corrigendum to “Changes in psychopathology in schizophrenia patients starting treatment with new-generation antipsychotics: therapeutic drug monitoring in a naturalistic treatment setting” [Eur. Neuropsychopharmacol. 26 (2016) 717–728]. Eur Neuropsychopharmacol. 2020;31:162–3.

    Google Scholar 

  • Kenakin TP. A pharmacology primer. Theory, applications, and methods. Amsterdam: Elsevier; 2009.

    Google Scholar 

  • Kinon BJ, Volavka J, Stauffer V, Edwards SE, Liu-Seifert H, Chen L, Adams DH, Lindenmayer JP, Mcevoy JP, Buckley PF, Lieberman JA, Meltzer HY, Wilson DR, Citrome L. Standard and higher dose of olanzapine in patients with schizophrenia or schizoaffective disorder: a randomized, double-blind, fixed-dose study. J Clin Psychopharmacol. 2008;28:392–400.

    Article  CAS  PubMed  Google Scholar 

  • Mauri MC, Steinhilber CP, Marino R, Invernizzi E, Fiorentini A, Cerveri G, Baldi ML, Barale F. Clinical outcome and olanzapine plasma levels in acute schizophrenia. Eur Psychiatry. 2005;20:55–60.

    Article  CAS  PubMed  Google Scholar 

  • Meyer JH, Wilson AA, Sagrati S, Hussey D, Carella A, Potter WZ, Ginovart N, Spencer EP, Cheok A, Houle S. Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry. 2004;161:826–35.

    Article  PubMed  Google Scholar 

  • Muller MJ, Regenbogen B, Hartter S, Eich FX, Hiemke C. Therapeutic drug monitoring for optimizing amisulpride therapy in patients with schizophrenia. J Psychiatr Res. 2007;41:673–9.

    Article  PubMed  Google Scholar 

  • Perry PJ, Sanger T, Beasley C. Olanzapine plasma concentrations and clinical response in acutely ill schizophrenic patients. J Clin Psychopharmacol. 1997;17:472–7.

    Article  CAS  PubMed  Google Scholar 

  • Perry PJ, Lund BC, Sanger T, Beasley C. Olanzapine plasma concentrations and clinical response: acute phase results of the North American olanzapine trial. J Clin Psychopharmacol. 2001;21:14–20.

    Article  CAS  PubMed  Google Scholar 

  • Preskorn SH. Therapeutic drug monitoring (TDM) in psychiatry (part I): why studies attempting to correlate drug concentration and antidepressant response don’t work. J Psychiatr Pract. 2014;20:133–7.

    Article  PubMed  Google Scholar 

  • Spina E, Avenoso A, Facciola G, Scordo MG, Ancione M, Madia AG, Ventimiglia A, Perucca E. Relationship between plasma concentrations of clozapine and norclozapine and therapeutic response in patients with schizophrenia resistant to conventional neuroleptics. Psychopharmacology. 2000;148:83–9.

    Article  CAS  PubMed  Google Scholar 

  • Stahl SM. Stahl’s essential psychopharmacology: neuroscientific basis and practical application. Cambridge: Cambridge University Press; 2013.

    Google Scholar 

  • Tanum L, Strand LP, Refsum H. Serum concentrations of citalopram – dose-dependent variation in R- and S-enantiomer ratios. Pharmacopsychiatry. 2010;43:190–3.

    Article  CAS  PubMed  Google Scholar 

  • Tasker TC, Kaye CM, Zussman BD, Link CG. Paroxetine plasma levels: lack of correlation with efficacy or adverse events. Acta Psychiatr Scand Suppl. 1989;350:152–5.

    Article  CAS  PubMed  Google Scholar 

  • Wagner JG. Pharmacokinetics for the pharmaceutical scientist. Missionsstrasse 44, CH-4055. Basel: Technomic Publishing AG; 1993.

    Google Scholar 

  • Walker EA, Zernig G, Woods JH. Buprenorphine antagonism of mu opioids in the rhesus monkey tail-withdrawal procedure. J Pharmacol Exp Ther. 1995;273:1345–52.

    CAS  PubMed  Google Scholar 

  • Walker EA, Zernig G, Young AM. In vivo apparent affinity and efficacy estimates for mu opiates in a rat tail-withdrawal assay. Psychopharmacology. 1998;136:15–23.

    Article  CAS  PubMed  Google Scholar 

  • Welling PG. Pharmacokinetics. Processes and mathematics. Washington, DC: American Chemical Society; 1986.

    Google Scholar 

  • Zernig G, Issaevitch T, Broadbear J, Burke T, Lewis JW, Brine GA, Woods JH. Receptor reserve and affinity of mu opioid agonists in mouse antinociception: correlation with receptor binding. Life Sci. 1995;57:2113–25.

    Article  CAS  PubMed  Google Scholar 

  • Zernig G, Issaevitch T, Woods JH. Calculation of agonist efficacy, apparent affinity and receptor population changes after administration of insurmountable antagonists: comparison of different analytical approaches. J Pharmacol Toxicol Methods. 1996;35:223–37.

    Article  CAS  PubMed  Google Scholar 

  • Zernig G, Lewis JW, Woods JH. Clocinnamox inhibits the intravenous self-administration of opioid agonists in rhesus monkeys: comparison with effects on opioid agonist-mediated antinociception. Psychopharmacology. 1997;129(3):233–42.

    Article  CAS  PubMed  Google Scholar 

  • Zernig G, Ahmed SH, Cardinal RN, Morgan D, Acquas E, Foltin RW, Vezina P, Negus SS, Crespo JA, Stoeckl P, Grubinger P, Madlung E, Haring C, Kurz M, Saria A. Explaining the escalation of drug use in substance dependence: models and appropriate animal laboratory tests. Pharmacology. 2007;80:65–119.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Zernig .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zernig, G., Hiemke, C. (2022). Pharmacokinetic and Pharmacodynamic Principles. In: Riederer, P., Laux, G., Nagatsu, T., Le, W., Riederer, C. (eds) NeuroPsychopharmacotherapy. Springer, Cham. https://doi.org/10.1007/978-3-030-62059-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62059-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62058-5

  • Online ISBN: 978-3-030-62059-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics