Skip to main content

Speciation Within the Genus Ctenomys: An Attempt to Find Models

  • Chapter
  • First Online:
Tuco-Tucos

Abstract

The genus Ctenomys is one of the most specious among the subterraneous rodent genera. The most recent revision lists 65 species. Regarding speciation models, it has always been accepted that the genus Ctenomys would have diversified due to allopatric processes. However, no reports have discussed the speciation models that might have generated this large group of species. At the same time, the high chromosomal variation that occurs among species is likely to have also caused this explosion of species. Simultaneously, the absence of sympatric distribution between species, except for two areas between two species each, would not promote the occurrence of hybrid zones. In this chapter, we discuss patterns that indicate whether the models of allopatric, sympatric, and chromosome speciation could have generated some of the Ctenomys species. Hybridization zones between and within species and their consequences are also reported. Finally, events that show us a recent process of differentiation of lineages that could be generating new species are also commented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Avila-Pires FD (1968) Tipos de mamíferos recentes no Museu Nacional, Rio de Janeiro. Arch Mus Nac 53:161–191

    Google Scholar 

  • Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568

    Article  CAS  PubMed  Google Scholar 

  • Bidau CI (2015) Ctenomyidae. Ctenomys. In: Patton J, Pardiñas FU, D’Elía G (eds) Mammals of South America, Rodents, vol 2. University of Chicago Press, Chicago, pp 818–877

    Google Scholar 

  • Bidau CJ, Avila-Pires FD (2009) On the type locality of Ctenomys bicolor Miranda-Ribeiro 1914 (Rodentia: Ctenomyidae). Mastozool Neotrop 16:445–447

    Google Scholar 

  • Bogdanov YF, Kolomiets OL, Lyapunova EA, Yanina IY, Mazurova TF (1986) Synaptonemal complex and chromosome chains in the rodent Ellobius talpinus heterozygous for 10 robertsonian translocation. Chromosoma 94:94–102

    Article  PubMed  Google Scholar 

  • Busch C, Antinuchi CD, del Valle JC, Kittlein MJ, Malizia AI, Vassallo AI, Zenuto RR (2000) Population ecology of subter- ranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life underground: the biology of subterranean rodents. University of Chicago Press, Chicago, pp 183–226

    Google Scholar 

  • Caraballo DA, Rossi MS (2017) Integrative lineage delimitation in rodents of the Ctenomys Corrientes group. Mammalia 82:35–47

    Article  Google Scholar 

  • Caraballo DA, Abruzzese GA, Rossi MS (2012) Diversity of tuco-tucos (Ctenomys, Rodentia) in the Northeastern wetlands from Argentina: mitochondrial phylogeny and chromosomal evolution. Genetica 140:125–136

    Article  PubMed  Google Scholar 

  • Castilho CS, Gava A, Freitas TRO (2012) A hybrid zone of the genus Ctenomys: A case study in southern Brazil. Genet Mol Biol 35:990–997

    Article  PubMed  PubMed Central  Google Scholar 

  • Contreras JR, Bidau CJ (1999) Líneas generales del panorama evolutivo de los roedores excavadores sudamericanos del género Ctenomys (Mammalia, Rodentia, Caviomor- pha: Ctenomyidae). Ciencia Siglo, XXI 1:1–22

    Google Scholar 

  • Cook JA, Anderson S, Yates TL (1990) Notes on Bolivian mammals: 6. The genus Ctenomys (Rodentia, Ctenomyidae) in the highlands. Am Mus Novit 2980:1–27

    Google Scholar 

  • D’Elía G, Teta P, Lessa EP (2020) A short overview of the systematics of Ctenomys: species limits and phylogenetic relationships. In: Freitas TRO, Gonçalves GL, Maestri R (eds) Tuco-tucos – an evolutionary approach to the diversity of a Neotropical rodent. Springer, Cham

    Google Scholar 

  • Darwin C (1859) On the origins of species by means of natural selection. John Murray, London

    Google Scholar 

  • De Miranda-Ribeiro A (1914) Zoologia. Commisão de Linhas Telegráphicas Estratégicas de MattoGrosso ao Amazonas. Annexo 5, Historia Natural; publ no 17, Mammíferos. 49 pp + Append, 3 pp + 25 pls Miranda-Ribeiro, 1914

    Google Scholar 

  • Dobigny G, Britton-Davidian J, Robinson TJ (2017) Chromosomal polymorphism in mammals: an evolutionary perspective. Biol Rev 92:1–21

    Article  PubMed  Google Scholar 

  • Fernandes FA, Fornel R, Cordeiro-Estrela P, Freitas TRO (2009) Intra- and interespecific skull variation in two sister species of the subter- ranean rodent genus Ctenomys (Rodentia, Ctenomyidae): coupling geometric morphometrics and chromosomal polymorphism. Zool J Linnean Soc 155:220–237

    Article  Google Scholar 

  • Fernández-Stolz G (2006) Estudos evolutivos, filogeográficos e de conservação em uma espécie endêmica do ecossistema de dunas costeiras do sul do Brasil, Ctenomys flamarioni (Rodentia – Ctenomyidae), através de marcadores moleculares microssatélites e DNA mitocondrial. Ph.D. thesis, Universidade Federal do Rio Grande do Sul. Porto Alegre, Brasil

    Google Scholar 

  • Fornel R, Cordeiro-Estrela P, Freitas TRO (2010) Skull shape and size variation in Ctenomys minutus (Rodentia: Ctenomyidae) in geographical, chromosomal polymorphism, and environmental contexts. Biol J Linn Soc 101:705–720

    Article  Google Scholar 

  • Fornel R, Cordeiro-Estrela P, Freitas TRO (2018) Skull shape and size variation within and between mendocinus and torquatus groups in the genus Ctenomys (Rodentia: Ctenomyidae) in chromosomal polymorphism context. Genet Mol Biol 41:263–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Freitas TRO (1994) Geographic variation of heterochromatin in Ctenomys flamarioni (Rodentia: Octodontidae) and its cytogenetic relationship with other species of the genus. Cytogenet Cell Genet 67:193–198

    Article  PubMed  Google Scholar 

  • Freitas TRO (1995a) Geographic distribution and conservation of four species of the genus Ctenomys in southern Brazil. Stud Neotropical Fauna Environ 30:53–59

    Article  Google Scholar 

  • Freitas TRO (1995b) Geographic distribution if sperm forms in the genus Ctenomys (Rodentia: Octodontidae). Revista Brasileira de Genética 18:43–46

    Google Scholar 

  • Freitas TRO (1997) Chromosome polymorphism in Ctenomys minutus (Rodentia–Octodontidae). Rev Bras Genética 20:1–7

    Google Scholar 

  • Freitas TRO (2001) Tuco-tucos (Rodentia, Octodontidae) in Southern Brazil: Ctenomys lami spec. nov. Separated from C. minutus Nehring 1887. Stud Neotrop Fauna Environ 36:1–8

    Article  Google Scholar 

  • Freitas TRO (2005) Analysis of skull morphology in 15 species of the genus Ctenomys, including seven karyologically distinct forms of Ctenomys minutus (Rodentia:Ctenomyidae). In: Lacey E, Myers P (eds) Mammalian diversification: from chromosomes to phylogeography. University of California Publications in Zoology, Berkeley, pp 131–154

    Google Scholar 

  • Freitas TRO (2006) Cytogenetics status of four Ctenomys species in the south of Brazil. Genetica 126:227–235

    Article  PubMed  Google Scholar 

  • Freitas TRO (2007) Ctenomys lami: the highest chromosome variability in Ctenomys (Rodentia, Ctenomyidae) due to a centric fusion/fission and pericentric inversion system. Acta Theriol 52:171–180

    Article  Google Scholar 

  • Freitas TRO (2016) Family Ctenomyidae. In: Wilson DE, Lacher TE Jr, Mittermeier RA (eds) Handbook of the Mammals of the World: Lagomorphs and Rodents I. Lynx Editions, Barcelona, pp 499–534

    Google Scholar 

  • Freitas TRO, Fernandes FA, Fornel R, Roratto PA (2012) An endemic new species of tuco-tuco, genus Ctenomys (Rodentia: Ctenomyidae), with a restricted geographic distribution in southern Brazil. J Mammal 93(5):1355–1367

    Article  Google Scholar 

  • Freygang CC, Marinho JR, Freitas TRO (2004) New karyotypes and some considerations about the chromosomal diversication of. Ctenomys minutus (Rodentia: Ctenomyidae) on the coastal plain of the Brazilian state of Rio Grande do Sul. Genetica 121:125–132

    Article  PubMed  Google Scholar 

  • Galiano D, Kubiak BB, Menezes LS, Overbeck GE, de Freitas TRO (2016) Wet soils affect habitat selection of a solitary subterranean rodent (Ctenomys minutus) in a Neotropical region. J Mammal 97:1095–1101

    Article  Google Scholar 

  • Gardner SL, Salazar-Bravo J, Cook JA (2014) New species of Ctenomys Blainville 1826 (Rodentia: Ctenomyidae) from the lowlands and central valleys of Bolivia. Special Publications of the Museum of the Texas Tech University 62:1–34

    Google Scholar 

  • Gava A, Freitas TRO (2002) Characterization of a hybrid zone between chromosomally divergent populations of Ctenomys minutus (Rodentia: Ctenomyidae). J Mammal 83:843–851

    Article  Google Scholar 

  • Gava A, Freitas TRO (2003) Inter and intra-specific hybridization in tuco-tucos (Ctenomys) from Brazilian Coastal Plains (Rodentia: Ctenomyidae). Genetica 119:11–17

    Article  CAS  PubMed  Google Scholar 

  • Gava A, Freitas TRO (2004) Microsatellite analysis of a hybrid zone between chromosomally divergent populations of Ctenomys minutus from southern Brazil (Rodentia: Ctenomyidae). J Mammal 85:1201–1206

    Article  Google Scholar 

  • Giménez MD, Mirol PM, Bidau CJ, Searle JB (2002) Molecular analysis of populations of Ctenomys (Caviomorpha, Rodentia) with high karyotypic variability. Cytogenet Genome Res 96:130–136

    Article  PubMed  Google Scholar 

  • Hadid Y, Tzur S, Pavlicek T, Sumbera R, Skliba J, Loevy M, Fragman-Sapir O, Beiles A, Arieli R, Raz S, Nevo E (2013) Possible incipient sympatric ecological speciation in blind mole rats (Spalax). Proc Natl Acad Sci U S A 110(7):2587–2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haffer JE, Prance GT (2002) Impulsos climáticos da evolução na Amazônia durante o Cenozóico: sobre a teoria dos Refúgios da diferenciação biótica. Estudos avançados 16:175–206

    Article  Google Scholar 

  • Hale DW, Greenbaum IF (1988) Synapsis of a chromosomal pair heterozygous of a pericentric-inversion and the presence of a heterochromatic short arm. Cytogent Cells Genet 48:55–57

    Article  CAS  Google Scholar 

  • Harrison RG (1993) Hybrids and hybrid zone: historical perspective. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, New York, pp 3–12

    Google Scholar 

  • Kexin L, Wang LY, Knisbacher BA, Xu Q, Levanon EY, Wang HH, Frenkel-Morgenstern M, Tagore S, Fang XD, Bazak L, Buchumenski I, Zhao Y, Lovy M, Li XF, Han LJ, Frenkel Z, Beiles A, Cao YB, Wang ZL, Nevo E (2016) Transcriptome, genetic editing, and micro RNA divergence substantiate sympatric speciation of blind mole ret., Spalax. Proc Natl Acad Sci U S A 113:7584–7589

    Article  CAS  Google Scholar 

  • King M (1993) Species evolution: the role of chromosome change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kubiak BB, Galiano D, Freitas TRO (2015) Sharing the space: Distribution, habitat segregation and delimitation of a new sympatric area of subterranean rodents. PLoS One 10:e0123220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kubiak BB, Gutiérrez EE, Galiano D, Maestri R, Freitas TRO (2017) Can niche modeling and geometric morphometrics document competitive exclusion in a pair of subterranean rodents (Genus Ctenomys) with Tiny Parapatric Distributions? Sci Rep 7:16283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kubiak BB, Maestri R, Almeida TS, Borges LR, Galiano D, Fornel R, de Freitas TRO (2018) Evolution in action: soil hardness influences morphology in a subterranean rodent (Rodentia: Ctenomyidae). Biol J Linn Soc 20:1–11

    Google Scholar 

  • Kubiak BB, Kretschmer R, Leipnitz LT, Maestri R, Almeida TS, Borges LR, Galiano D, Pereira JC, Oliveira EHC, Ferguson-Smith MA, Freitas TRO (2020) Hybridization between subterranean tuco-tucos (Rodentia, Ctenomyidae) with contrasting phylogenetic positions. Sci Rep 10:1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacey EA, Patton JL, Cameron GN (2000) Life underground: the biology of subterranean rodents. University of Chicago Press, Chicago/London, p 449

    Google Scholar 

  • Leipnitz LT, Fornel R, Ribas LEJ, Kubiak BB, Galiano D, Freitas TRO (2020) Lineages of tuco-tucos (Ctenomyidae: Rodentia) from midwest and northern Brazil: late irradiations of subterranean rodents towards the Amazon Forest. J Mamm Evol 27:161–176

    Article  Google Scholar 

  • Lessa EP, Cook JA (1998) The molecular phylogenetics of tuco-tucos (genus Ctenomys, Rodentia: Octodontidae) suggests an early burst of speciation. Mol Phylogenet Evol 9:88–99

    Article  CAS  PubMed  Google Scholar 

  • Li KX, Wang LY, Knisbacher BA, Xuv, Levanon EY, Wang HH, Frenkel-Morgenstern M, Tagore S, Fang XD, Bazak L, Buchumenski I, Zhao Y, Lovy M, Li XF, Han LJ, Frenkel Z, Beiles A, Bin Cao Y, Wang ZL, Nevo E (2016) Transcriptome, genetic editing, and microRNA divergence substantiate sympatric speciation of blind mole rat, Spalax. Proceedings of the National Academy of Sciences of the United States of America, 113:7584–7589

    Google Scholar 

  • Lopes CM, Freitas TRO (2012) Human impact in naturally patched small populations: genetic structure and conservation of the burrowing rodent. J Hered 103:672–681

    Article  CAS  PubMed  Google Scholar 

  • Lopes CM, Ximenes SSF, Gava A, Freitas TRO (2013) The role of chromosomal rearrangements and geographical barriers in the divergence of lineages in a South American subterranean rodent (Rodentia: Ctenomyidae: Ctenomys minutus). Heredity 111:293–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malizia AI, Busch C (1991) Reproductive parameters and growth in the fossorial rodent Ctenomys talarum (Rodentia: Octodontidae). Mammalia 55:293–305

    Article  Google Scholar 

  • Massarini AI, Freitas TRO (2005) Morphological and cytogenetics comparison in species of the mendocinus-group (genus Ctenomys) with emphasis in C. australis and C. flamarioni (Rodentia: Ctenomyidae). Caryologia 58:21–27

    Article  Google Scholar 

  • Massarini AI, Barros MA, Ortells MO, Reig OA (1991) Chromossomal polymorphism and small karyotypic diferentiation in a group of Ctenomys species from central Argentina (Rodentia: Octodontidae). Genetica 83:131–144

    Article  Google Scholar 

  • Massarini AI, Mizrahi D, Tiranti S, Toloza A, Luna F, Schleich EC (2002) Extensive chromosomal variation in Ctenomys talarum talarum from the Atlantic coast of Buenos Aires province, Argentina (Rodentia-Octodontidae). Mastozool Neotrop 9:199–207

    Google Scholar 

  • Mayr E (1942) Systematic and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Belknap Press of Harvard Univ Press, Cambridge, MA

    Book  Google Scholar 

  • Mirol P, Giménez MD, Searle JB, Bidau CJ, Faulkes CG (2010) Population and species boundaries in the South American subterranean rodent Ctenomys in a dynamic environment. Biol J Linn Soc Lond 100:368–383

    Article  Google Scholar 

  • Mora MS, Lessa EP, Kittlein MJ, Vassallo AI (2006) Phylogeography of the subterranean rodent Ctenomys australis in sand-dune habitats: evidence of population expansion. J Mammal 87:1192–1203

    Article  Google Scholar 

  • Nehring A (1900) Uber dis Scha ̈ del von Ctenomys minutus Nhrg., Ct. torquatus Licht und Ct. pundti Nhrg. Stzumgsb Ges NaturfFr 9:201–210

    Google Scholar 

  • Novello AF, Lessa EP (1986) G-Band homology in 2 karyomorphs of the Ctenomys pearsoni complex (Rodentia; Octodontidae) of neotropical fossorial rodents. Z Säugetierkd 51:378–380

    Google Scholar 

  • Ortells MO, Barrantes GE (1994) A study of genetic distances and variability in several species of the genus Ctenomys (Rodentia, Octodontidae) with special reference to probable causal role of chromosome in speciation. Biol J Linn Soc Lond 53:189–208

    Google Scholar 

  • Parada A, D’Elía G, Bidau CJ, Lessa EP (2011) Species groups and the evolutionary diversification of tuco-tucos, genus Ctenomys (Rodentia: Ctenomyidae). J Mammal 92:671–682

    Article  Google Scholar 

  • Petit RJ, Excoffier L (2009) Gene flow and species delimitation. Trends Ecol Evol 24:386–393

    Article  PubMed  Google Scholar 

  • Reig OA, Kiblisky P (1969) Chromosome multiformity in the genus Ctenomys (Rodentia, Octodontidae). Chromosoma 28:211–244

    Article  CAS  PubMed  Google Scholar 

  • Reig OA, Contreras JR, Piantanida MJ (1966) Contribución a la elucidación de la sistematica de las entidades del genero Ctenomys (Rodentia-Octodontidae) Cont. Cient Fac Exactas y Nat Univ de Buenos Ayres (Zool) 6:297–352

    Google Scholar 

  • Reig OA, Busch C, Ortells MO, Contreras JR (1990) An overview of evolution, systematics, population biology, cytogenetics, molecular biology and speciation in Ctenomys. In: Nevo E, Reig OA (eds) Evolution of subterranean mammals at the organismal and molecular levels. Wiley- Liss, New York, pp 71–96

    Google Scholar 

  • Reig OA, Massarini AI, Ortells MO, Barros MA, Tiranti SI, Dyzenchauz FJ (1992) New karyotypes and C-banding patterns of the subterranean rodents of the genus Ctenomys (Caviomorpha, Octodontidae) from Ar- gentina. Mammalia 56:603–623

    Article  Google Scholar 

  • Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358

    Article  PubMed  Google Scholar 

  • Stolz JFB, Gonçalves GL, Leipnitz LT, Freitas TRO (2013) DNA-based and geometric morphometric analysis to validate species designa- tion: a case study of the subterranean rodent Ctenomys bicolor. Genet Mol Res 12:5023–5037

    Article  CAS  PubMed  Google Scholar 

  • Teta P, D’Elía G (2020) Uncovering the species diversity of subterranean rodents atthe end of the world: three new species of Patagonian tuco-tucos (Rodentia, Hystricomorpha, Ctenomys). PeerJ 8:e9259

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomasco IH, Lessa EP (2007) Phylogeography of the tuco–tuco Ctenomys pearsoni: mtDNA variation and its implication for chromosomal differentiation. In: Kelt DA, Lessa EP, Salazar-Bravo JA, Patton JL (eds) The quintessential naturalist: honoring the life and legacy of Oliver P. Pearson. University of California Publications in Zoology, Berkeley, pp 859–882

    Google Scholar 

  • Wagner JA (1848) Beiträge zur Kentnniss der Arten von Ctenomys. Arch. Naturgesch 14:72–78

    Google Scholar 

  • Weschenfelder J, Baitelli R, Corrêa ICS, Bortolin EC, Santos CB (2014) Quaternary incised valleleys in southern Brazil coastline. J S Am Earth Sci 55:83–93

    Article  Google Scholar 

  • White MJD (1978) Modes of speciation. W.H. Freeman and Co., New York

    Google Scholar 

  • Wlasiuk G, Garza JC, Lessa EP (2003) Genetic and geographic differentiation in the Rio Negro tuco-tuco (Ctenomys rionegrensis): inferring the roles of migration and drift from multiple genetic markers. Evolution 57:913–926

    PubMed  Google Scholar 

  • Ximenez SSF (2009) Análises citogenéticas em uma zona híbrida interespecífica entre Ctenomys minutus e Ctenomys lami (Rodentia:Ctenomyidae) na planície costeira do Sul do Brasil. Trabalho de Conclusão, Ciências Biológicas-UFRGS

    Google Scholar 

Download references

Acknowledgments

I am deeply grateful to my undergraduate, MSc, and PhD students whose works provided much of the results that I used to write this chapter and the collaborators I had throughout the years studying Ctenomys. I also thank Carla Freitas for suggestions and reviewing the text and Raquel Freitas for help with figures and final text revision. Thanks also to Gislene Gonçalves for valuable discussions. This study was financed in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação do Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and Coordenação do Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Finance Code 001. I also acknowledge the support from the Graduate Programs PPGBM, PPGBAN, and PPGEcologia-UFRGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thales Renato Ochotorena de Freitas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Freitas, T.R.O. (2021). Speciation Within the Genus Ctenomys: An Attempt to Find Models. In: Freitas, T.R.O.d., Gonçalves, G.L., Maestri, R. (eds) Tuco-Tucos. Springer, Cham. https://doi.org/10.1007/978-3-030-61679-3_3

Download citation

Publish with us

Policies and ethics