Skip to main content

Effects of Environmental Pollution on the Conservation of Ctenomys

  • Chapter
  • First Online:
Tuco-Tucos

Abstract

Environmental pollutants are related to genetic and epigenetic changes with different effects on natural populations, including the size of the population reduction due to loss of variability and loss of reproductive capacity. In the past few decades, interest in using biomarkers or bioindicators as monitoring tools to assess environmental pollution has increased considerably. This is because biomarkers are suitable not only to provide information on the health status of the exposed organisms but also on the quality and/or quantity of the exposure situation. The genus Ctenomys, popularly known as tuco-tucos, is endemic to South America and is being evaluated as a possible bioindicator of its habitat. Animals such as tuco-tucos, which have reduced the size of the population and still suffer from the impact on their environments, such as habitat fragmentation, are more susceptible to suffering DNA damage from exposure to pollutants and have a more catastrophic effect on the structure of its population. This chapter will present some studies on environmental mutagenesis that have been carried out with species of Ctenomys in South America. In addition, we will present possible molecular biomarkers for future studies. In conservation genetics, these analyzes performed with Ctenomys represent a new approach to assess the anthropogenic effect on natural mammal populations. These studies are important due to the emphasis on the feasibility of genotoxic assays and epigenetic tools in conservation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alenalee (2008) English wikibooks- transferred from en.wikibooks to commons. Public Domain

    Google Scholar 

  • Altenburger R, Segner H, van der Oost R (2003) Biomarkers and PAHs – prospects for the assessment of exposure and effects in aquatic systems. In: PAHs: an ecotoxicological perspective. Wiley, Chichester, pp 297–328

    Chapter  Google Scholar 

  • ANDRÁŠ P, KRIŽÁNI I, STANKO M (2006) Free-living rodents as monitors of environmental contaminants at a polluted mining dump area. Carpth J Earth Environ Sci 1:51–62

    Google Scholar 

  • Barzon L, Lavezzo E, Militello V, Toppo S, Palù G (2011) Applications of next-generation sequencing technologies to diagnostic virology. Int J Mol Sci 12:7861–7884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bickham JW, Sandhu S, Hebert PDN, Chikhi L, Athwal R (2000) Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology. Rev Mutat Res 463:33–51

    Article  CAS  Google Scholar 

  • Blasco MA (2007) The epigenetic regulation of mammalian telomeres. Nat Rev Genet 8:299–309

    Article  CAS  PubMed  Google Scholar 

  • Brady SP, Monosson E, Matson CW, Bickham JW (2017) Evolutionary toxicology: toward a unified understanding of life’s response to toxic chemicals. Evol Appl 10:745–751

    Article  PubMed  PubMed Central  Google Scholar 

  • Busch C et al (2000) Population ecology of subterranean rodents. In: Life underground: the biology of subterranean rodents. University of Chicago Press, Chicago

    Google Scholar 

  • da Silva J (2016) DNA damage induced by occupational and environmental exposure to miscellaneous chemicals. Mutat Res Rev Mutat Res 770:170–182

    Article  CAS  PubMed  Google Scholar 

  • Da Silva J et al (2000a) Effects of chronic exposure to coal in wild rodents (Ctenomys torquatus) evaluated by multiple methods and tissues. Mutat Res Genet Toxicol Environ Mutagen 470:39–51

    Article  Google Scholar 

  • Da Silva J, De Freitas TRO, Heuser V, Marinho JR, Erdtmann B (2000b) Genotoxicity biomonitoring in coal regions using wild rodent Ctenomys torquatus by Comet assay and micronucleus test. Environ Mol Mutagen 35:270–278

    Article  PubMed  Google Scholar 

  • Dacar MA, Ojeda RA, Albanese S, Rodrı D (2010) Use of resources by the subterranean rodent Ctenomys mendocinus (Rodentia, Ctenomyidae), in the lowland Monte desert, Argentina. J Arid Environ 74:458–463

    Article  Google Scholar 

  • de Brito KCT, De Lemos CT, Rocha JAV, Mielli AC, Matzenbacher C, Vargas VMF (2013) Comparative genotoxicity of airborne particulate matter (PM2.5) using Salmonella, plants and mammalian cells. Ecotoxicol Environ Saf 94:14–20

    Article  CAS  PubMed  Google Scholar 

  • de Freitas TRO, Fernandes FA, Fornel R, Roratto PA (2012) An endemic new species of tuco-tuco, genus Ctenomys (Rodentia: Ctenomyidae), with a restricted geographic distribution in southern Brazil. J Mammal 93:1355–1367

    Article  Google Scholar 

  • De Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110

    Article  PubMed  CAS  Google Scholar 

  • Degrassi F et al (1999) CREST staining of micronuclei from free-living rodents to detect environmental contamination in situ. Mutagenesis 14:391–396

    Article  CAS  PubMed  Google Scholar 

  • Espitia-Pérez L et al (2018) Genetic damage in environmentally exposed populations to open-pit coal mining residues: analysis of buccal micronucleus cytome (BMN-cyt) assay and alkaline, Endo III and FPG high-throughput comet assay. Mutat Res Genet Toxicol Environ Mutagen 836:1–12

    Article  CAS  Google Scholar 

  • Fenech M (2002) Chromosomal biomarkers of genomic instability relevant to cancer. Drug Discov Today 7:1128–1137

    Article  CAS  PubMed  Google Scholar 

  • Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104

    Article  CAS  PubMed  Google Scholar 

  • Fernandes FA, Fornel R, Cordeiro-estrela P, Freitas TRO (2009) Intra- and interspecific skull variation in two sister species of the subterranean rodent genus Ctenomys (Rodentia, Ctenomyidae): coupling geometric morphometrics and chromosomal polymorphism. Zool J Linnean Soc 155:220–237

    Article  Google Scholar 

  • Freitas TRO (1995) Geographic distribution and conservation of four species of the genus ctenomys in Southern Brazil. Stud Neotropical Fauna Environ 30:53–59

    Article  Google Scholar 

  • Freitas TRO, Lessa EP (1984) Cytogenetics and morphology of Ctenomys torquatus (Rodentia: Octodontidae). J Mammal 65:637–642

    Article  Google Scholar 

  • Freygang CC, Marinho JR, de Freitas TRO (2004) New karyotypes and some considerations about the chromosomal diversification of Ctenomys minutus (Rodentia: Ctenomyidae) on the coastal plain of the Brazilian State of Rio Grande do Sul. Genetica 121:125–132

    Article  PubMed  Google Scholar 

  • Gerhardt A (2000) Biomonitoring for the 21st century. In: Gerhardt A (ed) Biomonitoring of polluted water, vol 40. R. Trans Tech Publications Ltd, Zurich-Uetikon, pp 1–12

    Google Scholar 

  • Gonçalves GL, de Freitas TRO, Freitas TRO (2009) Intraspecific variation and genetic differentiation of the collared tuco-tuco (Ctenomys Torquatus) in Southern Brazil. J Mammal 90:1020–1031

    Article  Google Scholar 

  • Groh KJ et al (2015) Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: II. A focus on growth impairment in fish. Chemosphere 120:778–792

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Castilla A, Olivero-Verbel J, Marrugo-Negrete J (2014) Heavy metals in wild house mice from coal-mining areas of Colombia and expression of genes related to oxidative stress, DNA damage and exposure to metals. Mutat Res Genet Toxicol Environ Mutagen 762:24–29

    Article  CAS  PubMed  Google Scholar 

  • Hamilton PB et al (2016) Population-level consequences for wild fish exposed to sublethal concentrations of chemicals – a critical review. Fish Fish 17:545–566

    Article  Google Scholar 

  • Hazratian L, Naderi M, Mollashahi M (2017) Norway rat, Rattus norvegicus in metropolitans, a bio-indicator for heavy metal pollution (Case study: Tehran, Iran). Casp J Environ Sci 15:85–92

    Google Scholar 

  • Hemminki K, Sorsa M, Vainio H (1979) Genetic risks caused by occupational chemicals. Use of experimental methods and occupational risk group monitoring in the detection of environmental chemicals causing mutations, cancer and malformations. Scand J Work Environ Health 5:307–327

    Article  CAS  PubMed  Google Scholar 

  • Heuser VD, Da Silva J, Moriske HJ, Dias JF, Yoneama ML, De Freitas TRO (2002) Genotoxicity biomonitoring in regions exposed to vehicle emissions using the comet assay and the micronucleus test in native rodent Ctenomys minutus. Environ Mol Mutagen 40:227–235

    Article  CAS  PubMed  Google Scholar 

  • Heuser VD, Erdtmann B, Kvitko K, Rohr P, da Silva J (2007) Evaluation of genetic damage in Brazilian footwear-workers: biomarkers of exposure, effect, and susceptibility. Toxicology 232:235–247

    Article  CAS  PubMed  Google Scholar 

  • Ieradi LA, Moreno S, Bolívar JP, Cappai A, Di Benedetto A, Cristaldi M (1998) Free-living rodents as bioindicators of genetic risk in natural protected areas. Environ Pollut 102:265–268

    Article  CAS  Google Scholar 

  • Jablonka E (2017) The evolutionary implications of epigenetic inheritance. Interface Focus 7:20160135

    Article  PubMed  PubMed Central  Google Scholar 

  • Jablonka EVA, Raz GAL (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176

    Article  PubMed  Google Scholar 

  • Jacobs JJL (2013) Senescence: back to telomeres. Nat Rev Mol Cell Biol 14:196

    Article  CAS  PubMed  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373

    Article  Google Scholar 

  • Kahl VFS, da Silva J (2016) Telomere length and its relation to human health. In: Telomere – a complex end of a chromosome. InTech, Rijeka, pp 163–185

    Google Scholar 

  • Kahl VS, Cappetta M, Da Silva J (2019) Epigenetic alterations: the relation between occupational exposure and biological effects in humans. In: Jurga S, Barciszewski J (eds) The DNA, RNA, and histone methylomes. Springer, Cham, pp 265–293

    Chapter  Google Scholar 

  • Kalisz S, Purugganan MD (2004) Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol Evol 19:309–314

    Article  PubMed  Google Scholar 

  • Kerley GIH, Whitford WG, Kay FR (2004) Effects of pocket gophers on desert soils and vegetation. J Arid Environ 58:155–166

    Article  Google Scholar 

  • Kleinjans JCS, Van Schooten FJ (2002) Ecogenotoxicology: the evolving field. Environ Toxicol Pharmacol 11:173–179

    Article  CAS  PubMed  Google Scholar 

  • Kuzmick DM, Mitchelmore CL, Hopkins WA, Rowe CL (2007) Effects of coal combustion residues on survival, antioxidant potential, and genotoxicity resulting from full-lifecycle exposure of grass shrimp (Palaemonetes pugio Holthius). Sci Total Environ 373:420–430

    Article  CAS  PubMed  Google Scholar 

  • Lacey EA, Patton JL, Cameron GN (2000) Life underground: the biology of subterranean rodents. University of Chicago Press, Chicago

    Google Scholar 

  • Lazo-Cancino D, Rivera R, Paulsen-Cortez K, González-Berríos N, Rodríguez-Gutiérrez R, Rodríguez-Serrano E (2020) The impacts of climate change on the habitat distribution of the vulnerable Patagonian-Fueguian species Ctenomys magellanicus (Rodentia, Ctenomyidae). J Arid Environ 173:104016

    Article  Google Scholar 

  • León G, Pérez LE, Linares JC, Hartmann A, Quintana M (2007) Genotoxic effects in wild rodents (Rattus rattus and Mus musculus) in an open coal mining area. Mutat Res Genet Toxicol Environ Mutagen 630:42–49

    Article  CAS  Google Scholar 

  • León-Mejía G et al (2011) Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay. Sci Total Environ 409:686–691

    Article  PubMed  CAS  Google Scholar 

  • Liou SH et al (2017) Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles. J Hazard Mater 331:329–335

    Article  CAS  PubMed  Google Scholar 

  • Lopes CM, de Freitas TRO (2012) Human impact in naturally patched small populations: genetic structure and conservation of the burrowing rodent, tuco-tuco (Ctenomys lami). J Hered 103:672–681

    Article  CAS  PubMed  Google Scholar 

  • Lopes CM, Ximenes SSF, Gava A, De Freitas TRO (2013) The role of chromosomal rearrangements and geographical barriers in the divergence of lineages in a South American subterranean rodent (Rodentia: Ctenomyidae: Ctenomys minutus). Heredity 111:293–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinho JR, De Freitas TRO (2006) Population structure of Ctenomys minutus (Rodentia, Ctenomyidae) on the coastal plain of Rio Grande do Sul, Brazil. Acta Theriol 51:53–59

    Article  Google Scholar 

  • Martiniaková M, Omelka R, Grosskopf B, Jančová A (2010) Yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus) as zoomonitors of environmental contamination at a polluted area in Slovakia. Acta Vet Scand 52:1–5

    Article  CAS  Google Scholar 

  • Matson CW et al (2006) Evolutionary toxicology: population-level effects of chronic contaminant exposure on the marsh frogs ( Rana ridibunda) of Azerbaijan. Environ Health Perspect 114:547–552

    Article  CAS  PubMed  Google Scholar 

  • Matzenbacher CA, Da Silva J, Garcia ALH, Cappetta M, de Freitas TRO (2019) Anthropogenic effects on natural mammalian populations: correlation between telomere length and coal exposure. Sci Rep 9:6325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maximillian J, Brusseau ML, Glenn EP, Matthias AD (2019) Pollution and environmental perturbations in the global system. In: Environmental and pollution science. Elsevier, Amsterdam, pp 457–476

    Chapter  Google Scholar 

  • Meireles J, Rocha R, Neto AC, Cerqueira E (2009) Genotoxic effects of vehicle traffic pollution as evaluated by micronuclei test in tradescantia (Trad-MCN). Mutat Res Genet Toxicol Environ Mutagen 675:46–50

    Article  CAS  Google Scholar 

  • Mora MS, Mapelli FJ, López A, Gómez Fernández MJ, Mirol PM, Kittlein MJ (2017) Landscape genetics in the subterranean rodent Ctenomys “chasiquensis” associated with highly disturbed habitats from the southeastern Pampas region, Argentina. Genetica 145:575–591

    Article  PubMed  Google Scholar 

  • Nevo E (1979) Adaptive convergence and divergence of subterranean mammals. Annu Rev Ecol Syst 10:269–308

    Article  Google Scholar 

  • Nowak RM (1999) Walker’s mammals of the world, 6th edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Parada A, D’Elía G, Bidau CJ, Lessa EP (2011) Species groups and the evolutionary diversification of tuco-tucos, genus Ctenomys (Rodentia: Ctenomyidae). J Mammal 92:671–682

    Article  Google Scholar 

  • Parthasarathi R, Dhawan A (2018) Silico approaches for predictive toxicology. In: In vitro toxicology. Elsevier, London, pp 91–109

    Chapter  Google Scholar 

  • Pavanello S et al (2010) Shorter telomere length in peripheral blood lymphocytes of workers exposed to polycyclic aromatic hydrocarbons. Carcinogenesis 31:216–221

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa J et al (2017) Evolutionary consequences of historical metal contamination for natural populations of Chironomus riparius (Diptera: Chironomidae). Ecotoxicology 26:534–546

    Article  CAS  PubMed  Google Scholar 

  • Perkins R, Fang H, Tong W, Welsh WJ (2003) Quantitative structure–activity relationship methods: perspectives on drug discovery and toxicology. Environ Toxicol Chem 22:1666

    Article  CAS  PubMed  Google Scholar 

  • Petras M, Vrzoc M, Pandrangi R, Ralph S, Perry K (1995) Biological monitoring of environmental genotoxicity in southwestern Ontario. In: Butterworth J, Corkum BE, Guzmán-Rincón LD (eds) Biomonitors and biomarkers as indicators of environmental change. Plenum Press, New York, pp 115–137

    Google Scholar 

  • Reichman OJ, Seabloom EW (2002) The role of pocket gophers as subterranean ecosystem engineers. Trends Ecol Evol 17:44–49

    Article  Google Scholar 

  • Reig OA, Busch C, Ortells MO, Contreras JL (1990) An overview of evolution, systematica, population biology and molecular biology in Ctenomys. In: Nevo OA, Reig E (eds) Biology of subterranean mammals at the organismal and molecular levels. Allan Liss, New York, p 442

    Google Scholar 

  • Richards CL, Bossdorf O, Pigliucci M (2010) What role does heritable epigenetic variation play in phenotypic evolution? Bioscience 60:232–237

    Article  Google Scholar 

  • Rohr P et al (2013) Evaluation of genetic damage in open-cast coal mine workers using the buccal micronucleus cytome assay. Environ Mol Mutagen 54:65–71

    Article  CAS  PubMed  Google Scholar 

  • Salagovic J, Gilles J, Verschaeve L, Kalina I (1996) The comet assay for the detection of genotoxic damage in the earthworms: a promising tool for assessing the biological hazards of polluted sites. Folia Biol 42:17–21

    CAS  Google Scholar 

  • Santoyo MM, Flores CR, Torres AL, Wrobel K, Wrobel K (2011) Global DNA methylation in earthworms: a candidate biomarker of epigenetic risks related to the presence of metals/metalloids in terrestrial environments. Environ Pollut 159:2387–2392

    Article  CAS  PubMed  Google Scholar 

  • Schaeffer DJ (1991) A toxicological perspective on ecosystem characteristics to track sustainable development. Ecotoxicol Environ Saf 22:225–239

    Article  CAS  PubMed  Google Scholar 

  • Schleich CE, Beltrame MO, Antenucci CD (2010) Heavy metals accumulation in the subterranean rodent Ctenomys talarum (Rodentia: Ctenomyidae) from areas with different risk of contamination. Folia Zool 59:108–114

    Article  Google Scholar 

  • Silva J, De Freitas TRO, Marinho JR, S. G., and E. B. (2000) An alkaline single-cell gel electrophoresis (comet) assay for environmental biomonitoring with native rodents. Genet Mol Biol 23:241–245

    Article  Google Scholar 

  • Singh NP, Stephens RE (1998) Microgel electrophoresis: sensitivity, mechanisms, and DNA electrostretching. Mutat Res 175:184–191

    Google Scholar 

  • Steinert SA, Streib-Montee R, Leather JM, Chadwick DB (1998) DNA damage in mussels at sites in San Diego Bay. Mutat Res Fundam Mol Mech Mutagen 399:65–85

    Article  CAS  Google Scholar 

  • Sturla SJ et al (2014) Systems toxicology: from basic research to risk assessment. Chem Res Toxicol 27:314–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Šumbera R, Baruš V, Tenora F (2003) Heavy metals in the silvery mole-rat, Heliophobius argenteocinereus (Bathyergidae, Rodentia) from Malawi. Folia Zool 52:149–153

    Google Scholar 

  • Teta P, D’Elía G (2020) Uncovering the species diversity of subterranean rodents at the end of the world: three new species of Patagonian tuco-tucos (Rodentia, Hystricomorpha, Ctenomys ). PeerJ 8:e9259

    Article  PubMed  PubMed Central  Google Scholar 

  • Tice RR et al (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  PubMed  Google Scholar 

  • Van Gestel CAM, Van Brummelen TC (1996) Incorporation of the biomarker concept in ecotoxicology calls for a redefinition of terms. Ecotoxicology 5:217–225

    Article  PubMed  Google Scholar 

  • Wagh ND, Shukla PV, Tambe SB, Ingle ST (2006) Biological monitoring of roadside plants exposed to vehicular pollution in Jalgaon city. J Environ Biol 27:419–421

    CAS  PubMed  Google Scholar 

  • Yehezkel S, Segev Y, Viegas-Péquignot E, Skorecki K, Selig S (2008) Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet 17:2776–2789

    Article  CAS  PubMed  Google Scholar 

  • Zakian VA (2012) Telomeres: the beginnings and ends of eukaryotic chromosomes. Exp Cell Res 318:1456–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zocche JJ et al (2014) Heavy-metal content and oxidative damage in Hypsiboas faber: the impact of coal-mining pollutants on amphibians. Arch Environ Contam Toxicol 66:69–77

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matzenbacher, C.A., da Silva, J. (2021). Effects of Environmental Pollution on the Conservation of Ctenomys. In: Freitas, T.R.O.d., Gonçalves, G.L., Maestri, R. (eds) Tuco-Tucos. Springer, Cham. https://doi.org/10.1007/978-3-030-61679-3_12

Download citation

Publish with us

Policies and ethics