Skip to main content

Forecasting Electricity Consumption Using Weather Data in an Edge-Fog-Cloud Data Analytics Architecture

  • Conference paper
  • First Online:
Advances on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2020)

Abstract

The forecasting of electricity consumption is a well-study research problem; however, electricity consumption is a complex model because it depends on many factors, and its accuracy is not always accurate. The accuracy of this forecasting impact; for example, in the utilities in the bulk generation of electricity and in the end-user at economical prices. This work shows the implementation of a forecasting model considering weather data across the smart metering system infrastructure using and edge-fog-cloud architecture for data analytics. The results show that using weather data across edge-fog-cloud architecture is an excellent alternative to forecast electricity consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vial, G.: Understanding digital transformation: a review and a research agenda. J. Strateg. Inf. Syst. 28(2), 118–144 (2019). https://doi.org/10.1016/j.jsis.2019.01.003

    Article  Google Scholar 

  2. Dileep, G.: A survey on smart grid technologies and applications. Renew. Energy 146, 2589–2625 (2020). https://doi.org/10.1016/j.renene.2019.08.092

    Article  Google Scholar 

  3. Borovina, D., et al.: Error performance analysis and modeling of narrow-band PLC technology enabling smart metering systems. Int. J. Electr. Power Energy Syst. 116 (2019). https://doi.org/10.1016/j.ijepes.2019.105536

  4. Balaji, J., et al.: Machine learning approaches to electricity consumption forecasting in automated metering infrastructure (AMI) systems: an empirical study. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds.) Cybernetics and Mathematics Applications in Intelligent Systems. CSOC 2017. Advances in Intelligent Systems and Computing, vol. 574. Springer (2017). https://doi.org/10.1007/978-3-319-57264-2_26

  5. Rokan, B., Kotb, Y.: Towards a real IoT-based smart meter system. In: Luhach, A., Kosa, J., Poonia, R., Gao, X.Z., Singh, D. (eds.) First International Conference on Sustainable Technologies for Computational Intelligence. Advances in Intelligent Systems and Computing, vol. 1045. Springer (2020). https://doi.org/10.1007/978-981-15-0029-9_11

  6. Adam, A., et al.: The fog cloud of things: a survey on concepts, architecture, standards, tools, and applications. Internet Things 9 (2020). https://doi.org/10.1016/j.iot.2020.100177

  7. Forcan, M., Maksimović, M.: Cloud-fog-based approach for smart grid monitoring. Simul. Model. Pract. Theory 101 (2020). https://doi.org/10.1016/j.simpat.2019.101988

  8. Dehalwar, V.: Electricity load forecasting for urban area using weather forecast information. In: 2016 IEEE International Conference on Power and Renewable Energy (ICPRE), Shanghai, pp. 355–359 (2016). http://doi.org/10.1109/ICPRE.2016.7871231

  9. Zeng, Q., et al.: An optimum regression approach for analyzing weather influence on the energy consumption. In: 2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Beijing, pp. 1–6 (2016). http://doi.org/10.1109/PMAPS.2016.7764178

  10. Hor, C., et al.: Analyzing the impact of weather variables on monthly electricity demand. IEEE Trans. Power Syst. 20(4), 2078–2085 (2005). https://doi.org/10.1109/TPWRS.2005.857397

    Article  Google Scholar 

  11. Prabakar, A., et al.: Applying machine learning to study the relationship between electricity consumption and weather variables using open data. In: 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Sarajevo, pp. 1–6 (2018). http://doi.org/10.1109/ISGTEurope.2018.8571430

  12. Moreno-Carbonell, S., et al.: Rethinking weather station selection for electric load forecasting using genetic algorithms. Int. J. Forecast. 36(2), 695–712 (2020). https://doi.org/10.1016/j.ijforecast.2019.08.008

    Article  Google Scholar 

  13. Agüera-Pérez, A., et al.: Weather forecasts for microgrid energy management: review, discussion and recommendations. Appl. Energy 228, 265–278 (2018). https://doi.org/10.1016/j.apenergy.2018.06.087

    Article  Google Scholar 

  14. Jose, D., et al.: Weather dependency of electricity demand: a case study in warm humid tropical climate. In: 2016 3rd International Conference on Electrical Energy Systems (ICEES), Chennai, pp. 102–105 (2016). http://doi.org/10.1109/ICEES.2016.7510624

  15. Rusina, A., et al.: Short-term electricity consumption forecast in Siberia IPS using climate aspects. In: 2018 19th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Erlagol, pp. 6403–6407 (2018). http://doi.org/10.1109/EDM.2018.8435002

  16. Parkpoom, S., et al.: Climate change impacts on electricity demand. In: 39th International Universities Power Engineering Conference. UPEC 2004, Bristol, UK, 2004, vol. 2, pp. 1342–1346 (2004). https://ieeexplore.ieee.org/abstract/document/1492245

  17. Parkpoom, S., Harrison, G.: Analyzing the impact of climate change on future electricity demand in Thailand. IEEE Trans. Power Syst. 23(3), 1441–1448 (2008). https://doi.org/10.1109/TPWRS.2008.922254

    Article  Google Scholar 

  18. Shakouri, H., Nadimi, R., et al.: Investigation on the short-term variations of electricity demand due to the climate changes via a hybrid TSK-FR model. In: 2007 IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, pp. 807–811 (2007). http://doi.org/10.1109/IEEM.2007.4419302

  19. Gastli, A., et al.: Correlation between climate data and maximum electricity demand in Qatar. In: 2013 7th IEEE GCC Conference and Exhibition (GCC), Doha, pp. 565–570 (2013). http://doi.org/10.1109/IEEEGCC.2013.6705841

  20. Fidalgo, J., et al.: Impact of climate changes on the Portuguese energy generation mix. In: 2019 16th International Conference on the European Energy Market (EEM), Ljubljana, Slovenia, pp. 1–6 (2019). http://doi.org/10.1109/EEM.2019.8916539

  21. Zachariadis, T.: Forecast of electricity consumption in Cyprus up to the year 2030: the potential impact of climate change. Energy Policy 38(2), 744–750 (2010). https://doi.org/10.1016/j.enpol.2009.10.019

    Article  Google Scholar 

  22. Burillo, D., et al.: Forecasting peak electricity demand for Los Angeles considering higher air temperatures due to climate change. Appl. Energy 236, 1–9 (2019). https://doi.org/10.1016/j.apenergy.2018.11.039

    Article  Google Scholar 

  23. Li, G., et al.: Relations of total electricity consumption to climate change in Nanjing. Energy Procedia 152, 756–761 (2018). https://doi.org/10.1016/j.egypro.2018.09.241

    Article  Google Scholar 

  24. Ahmad, T., et al.: Smart energy forecasting strategy with four machine learning models for climate-sensitive and non-climate sensitive conditions. Energy 198 (2020). https://doi.org/10.1016/j.energy.2020.117283

  25. Zhang, C., Liao, H., Mi, Z.: Climate impacts: temperature and electricity consumption. Nat. Hazards 99, 1259–1275 (2019). https://doi.org/10.1007/s11069-019-03653-w

    Article  Google Scholar 

  26. Staffell, I., Pfenninger, S.: The increasing impact of weather on electricity supply and demand. Energy 145, 65–78 (2018). https://doi.org/10.1016/j.energy.2017.12.051

    Article  Google Scholar 

  27. Aslam, Z., et al.: An enhanced convolutional neural network model based on weather parameters for short-term electricity supply and demand. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) Advanced Information Networking and Applications. AINA 2020. Advances in Intelligent Systems and Computing, vol. 1151. Springer (2020). https://doi.org/10.1007/978-3-030-44041-1_3

  28. Nadtoka, I., Al-Zihery, A.: Mathematical modelling and short-term forecasting of electricity consumption of the power system, with due account of air temperature and natural illumination based on support vector machine and particle swarm. Procedia Eng. 129, 657–663 (2015). https://doi.org/10.1016/j.proeng.2015.12.087

    Article  Google Scholar 

  29. Son, H., Kim, C.: Short-term forecasting of electricity demand for the residential sector using weather and social variables. Resour. Conserv. Recycl. 123, 200–207 (2017). https://doi.org/10.1016/j.resconrec.2016.01.016

    Article  Google Scholar 

  30. De Felice, M., et al.: Seasonal climate forecasts for medium-term electricity demand forecasting. Appl. Energy 137, 435–444 (2015). https://doi.org/10.1016/j.apenergy.2014.10.030

    Article  Google Scholar 

  31. Fei, X., et al.: CPS data streams analytics based on machine learning for Cloud and Fog Computing: a survey. Future Gener. Comput. Syst. 90, 435–450 (2019). https://doi.org/10.1016/j.future.2018.06.042

    Article  Google Scholar 

  32. Spiliotis, E., et al.: Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption. Appl. Energy 261 (2020). https://doi.org/10.1016/j.apenergy.2019.114339

Download references

Acknowledgment

This works is partial supported by Tecnológico Nacional de México under grants 7948.20-P and 8000.20-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Olivares-Rojas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olivares-Rojas, J.C., Reyes-Archundia, E., Gutiérrez-Gnecchi, J.A., Molina-Moreno, I., Méndez-Patiño, A., Cerda-Jacobo, J. (2021). Forecasting Electricity Consumption Using Weather Data in an Edge-Fog-Cloud Data Analytics Architecture. In: Barolli, L., Takizawa, M., Yoshihisa, T., Amato, F., Ikeda, M. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing. 3PGCIC 2020. Lecture Notes in Networks and Systems, vol 158. Springer, Cham. https://doi.org/10.1007/978-3-030-61105-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61105-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61104-0

  • Online ISBN: 978-3-030-61105-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics