Skip to main content

Automatic Defect Recognition in Nonwovens Using Images and Metadata Analysis—A Deep Learning Approach

  • Chapter
  • First Online:
Artificial Intelligence in Industry 4.0

Abstract

The production of the nonwoven fabric is a particular process that requires to avoid any kind of defect and contamination. High-resolution camera systems and different image analysis techniques are currently in use. Nevertheless, the common procedure requires a manned intervention. In this work we propose, using both metadata and images of the defects provided by the vision system, a joined application of machine learning, and deep learning techniques to completely automate the severe defect image identification in order to obtain high-quality products and reduce machine stops. By means of Principal Component Analysis, Hotelling’s T-Squared, and Q residuals we were able to use the metadata to identify and remove anomalous samples; then, by applying the Partial Least Squared/Discriminant Analysis we performed feature selection on the metadata variables. Metadata pre-processed in such way and related images are used as an input of a combination of two different subnetworks: a Convolutional Neural Network to analyze the images and a Multi-Layer Feedforward Neural Network to analyze the metadata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kumar, A.: Computer-vision-based fabric defect detection: a survey. IEEE Trans. Ind. Electron. 55(1), 348–363 (2008)

    Article  Google Scholar 

  2. Kunttu, I., Lepisto, L., Rauhamaa, J., Visa, A.J.: Classification method for defect images based on association and clustering. In: Data Mining and Knowledge Discovery: Theory, Tools, and Technology V, International Society for Optics and Photonics, vol. 5098, pp. 19–28 (2003)

    Google Scholar 

  3. Gu, I.Y.H., Andersson, H., Vicen, R.: Wood defect classification based on image analysis and support vector machines. Wood Sci. Technol. 44(4), 693–704 (2010)

    Article  Google Scholar 

  4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  5. Tao, X., Wang, Z., Zhang, Z., Zhang, D., Xu, D., Gong, X., Zhang, L.: Wire defect recognition of spring-wire socket using multitask convolutional neural networks. In: IEEE Transactions on Components, Packaging and Manufacturing Technology, pp. 1–10. IEEE (2018)

    Google Scholar 

  6. Essid, O., Laga, H., Samir, C.: Automatic detection and classification of manufacturing defects in metal boxes using deep neural networks. Plos One 13(11) (2018)

    Google Scholar 

  7. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Google Scholar 

  8. Soukup, D., Huber-Mörk, R.: Convolutional neural networks for steel surface defect detection from photometric stereo images. In: International Symposium on Visual Computing, pp. 668–677. Springer (2014)

    Google Scholar 

  9. Masci, J., Meier, U., Ciresan, D., Schmidhuber, J., Fricout, G.: Steel defect classification with max-pooling convolutional neural networks. In: The 2012 International Joint Conference on Neural Networks, pp. 1–6. IEEE (2012)

    Google Scholar 

  10. Cha, Y.J., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput.-Aided Civ. Infrastruct. Eng. 32(5), 361–378 (2017)

    Article  Google Scholar 

  11. Faghih-Roohi, S., Hajizadeh, S., Núñez, A., Babuska, R., De Schutter, B.: Deep convolutional neural networks for detection of rail surface defects. In: 2016 International Joint Conference on Neural Networks, pp. 2584–2589. IEEE (2016)

    Google Scholar 

  12. Mujica, L.E., Rodellar, J., Fernandez, A., Güemes, A.: Q-statistic and T2-statistic PCA-based measures for damage assessment in structures. Struct. Health Monit. 10(5), 539–553 (2011)

    Article  Google Scholar 

  13. Chong, I.G., Jun, C.H.: Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 78(1–2), 103–112 (2005)

    Article  Google Scholar 

  14. Favilla, S., Durante, C., Vigni, M., Cocchi, M.: Assessing feature relevance in NPLS models by VIP. Chemom. Intell. Lab. Syst. 129, 76–86 (2013)

    Article  Google Scholar 

  15. Gromski, P.S., Xu, Y., Correa, E., Ellis, D.I., Turner, M.L., Goodacre, R.: A comparative investigation of modern feature selection and classification approaches for the analysis of mass spectrometry data. Analytica Chimica Acta, Elsevier 829, 1–8 (2014)

    Google Scholar 

  16. Galindo-Prieto, B., Eriksson, L., Trygg, J.: Variable influence on projection (VIP) for orthogonal projections to latent structures (OPLS). J. Chemom. 28(8), 623–632 (2014)

    Article  Google Scholar 

  17. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE (2016)

    Google Scholar 

  19. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  20. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: MobileNets: efficient convolutional neural networks for mobile vision applications (2017). arXiv:1704.04861

  21. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, NV, pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

  22. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement (2018). arXiv:1804.02767

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Galatolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calderisi, M., Galatolo, G., Ceppa, I., Motta, T., Vergentini, F. (2021). Automatic Defect Recognition in Nonwovens Using Images and Metadata Analysis—A Deep Learning Approach. In: Dingli, A., Haddod, F., Klüver, C. (eds) Artificial Intelligence in Industry 4.0. Studies in Computational Intelligence, vol 928. Springer, Cham. https://doi.org/10.1007/978-3-030-61045-6_9

Download citation

Publish with us

Policies and ethics