Skip to main content

Medical CT Image Super-Resolution via Cyclic Feature Concentration Network

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12305))

Abstract

Clear and high-resolution medical computed tomography (CT) images are of great significance for early medical diagnosis. In practice, there are many cases of medical CT images that lead to poor image quality which complicates the diagnosis process. This paper proposes a new type of neural network that enables low-resolution images to reconstruct high-resolution images and aids in the early diagnosis of medical CT images. The network mainly consists of a low-level feature extraction module, a cyclic feature concentration block, and a reconstruction module. First, the underlying feature extraction module extracts the effective feature information of the low-resolution image. Then, the cyclic feature concentration block further extracts the feature information. Finally, the reconstruction module reconstructs the high-definition image. It can be seen from the experiment results that the method proposed in this paper achieved the best results on two objective indicators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kak, A.C., Slaney, M., Wang, G.: Principles of computerized tomographic imaging. Med. Phys. 29(1), 107 (2002)

    Article  Google Scholar 

  2. Miglioretti, D.L., Johnson, E., Williams, A., et al.: The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr. 167(8), 700–707 (2013)

    Article  Google Scholar 

  3. La Rivière, P.J., Bian, J., Vargas, P.A.: Penalized-likelihood sinogram restoration for computed tomography. IEEE Trans. Med. Imaging 25(8), 1022–1036 (2006)

    Article  Google Scholar 

  4. Jiang, M., Wang, G., Skinner, M.W., et al.: Blind deblurring of spiral CT images. IEEE Trans. Med. Imaging 22(7), 837–845 (2003)

    Article  Google Scholar 

  5. Poot, D.H.J., Van Meir, V., Sijbers, J.: General and efficient super-resolution method for multi-slice MRI. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 615–622. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15705-9_75

    Chapter  Google Scholar 

  6. Shi, W., et al.: Cardiac image super-resolution with global correspondence using multi-atlas patchmatch. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 9–16. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_2

    Chapter  Google Scholar 

  7. Odille, F., Bustin, A., Chen, B., Vuissoz, P.-A., Felblinger, J.: Motion-corrected, super-resolution reconstruction for high-resolution 3D cardiac cine MRI. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 435–442. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_52

    Chapter  Google Scholar 

  8. Zhang, R., Thibault, J.B., Bouman, C.A., et al.: Model-based iterative reconstruction for dual-energy X-ray CT using a joint quadratic likelihood model. IEEE Trans. Med. Imaging 33(1), 117–134 (2013)

    Article  Google Scholar 

  9. Yu, Z., Thibault, J.B., Bouman, C.A., et al.: Fast model-based X-ray CT reconstruction using spatially nonhomogeneous ICD optimization. IEEE Trans. Image Process. 20(1), 161–175 (2010)

    Article  MathSciNet  Google Scholar 

  10. Thibault, J.B., Sauer, K.D., Bouman, C.A., et al.: A three-dimensional statistical approach to improved image quality for multislice helical CT. Med. Phys. 34(11), 4526–4544 (2007)

    Article  Google Scholar 

  11. Yang, J., Wright, J., Huang, T.S., et al.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  12. Zhang, Y., Wu, G., Yap, P.T., et al.: Reconstruction of super-resolution lung 4D-CT using patch-based sparse representation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 925–931. IEEE (2012)

    Google Scholar 

  13. Dong, W., Zhang, L., Shi, G., et al.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7), 1838–1857 (2011)

    Article  MathSciNet  Google Scholar 

  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  15. Ledig, C., Theis, L., Huszár, F., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  16. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  17. Hui, Z., Wang, X., Gao, X.: Fast and accurate single image super-resolution via information distillation network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 723–731 (2018)

    Google Scholar 

  18. Wang, G., Kalra, M., Orton, C.G.: Machine learning will transform radiology significantly within the next 5 years. Med. Phys. 44(6), 2041–2044 (2017)

    Article  Google Scholar 

  19. Chen, Y., Shi, F., Christodoulou, Anthony G., Xie, Y., Zhou, Z., Li, D.: Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 91–99. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_11

    Chapter  Google Scholar 

  20. Yu, H., Liu, D., Shi, H., et al.: Computed tomography super-resolution using convolutional neural networks. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3944–3948. IEEE (2017)

    Google Scholar 

  21. Wolterink, J.M., Leiner, T., Viergever, M.A., et al.: Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imaging 36(12), 2536–2545 (2017)

    Article  Google Scholar 

  22. Mardani, M., Gong, E., Cheng, J.Y., et al.: Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans. Med. Imaging 38(1), 167–179 (2018)

    Article  Google Scholar 

  23. You, C., Li, G., Zhang, Y., et al.: CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE). IEEE Trans. Med. Imaging 39(1), 188–203 (2019)

    Article  Google Scholar 

  24. Chi, J., Zhang, Y., Yu, X., et al.: Computed tomography (CT) image quality enhancement via a uniform framework integrating noise estimation and super-resolution networks. Sensors 19(15), 3348 (2019)

    Article  Google Scholar 

  25. Shi, W., Caballero, J., Huszár, F., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  26. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)

    Article  Google Scholar 

  27. Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  28. Dong, C., Loy, C.C., He, K., et al.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  29. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

Download references

Acknowledgment

This work is supported in part by grants from the China Postdoctoral Science Foundation No. 2017M611905, Suzhou Industrial Technology Innovation Special Project (Liveli-hood Technology)—Technology Demonstration Project No. SS201701 No. SYSD2019152, A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juncheng Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Jia, J. (2020). Medical CT Image Super-Resolution via Cyclic Feature Concentration Network. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12305. Springer, Cham. https://doi.org/10.1007/978-3-030-60633-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60633-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60632-9

  • Online ISBN: 978-3-030-60633-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics