Skip to main content

Contrast-Enhanced Ultrasound

  • Reference work entry
  • First Online:
Noninvasive Vascular Diagnosis

Abstract

The clinical application of contrast-enhanced two-dimensional echocardiography was initially introduced in 1968 and demonstrated significant improvement in visualization compared to non-contrast-enhanced ultrasound. Its use has expanded to multiple vascular territories including the thoracic and abdominal aorta, carotid artery, lower extremity arteries, and venous circulation. Current contrast agents consist of stabilized gas-filled microbubbles (1–7 μm in diameter) that offer adequate safety profiles and improved efficacy. Microbubbles do not diffuse out of the circulation and thus behave as blood pool marker, are able to pass through the capillary pulmonary bed, and are stable enough to achieve enhancement for the duration of the examination. Though detectable with Doppler systems, special multipulse insonating sequences have been developed that selectively display their presence, whether in large vessels or in the microvasculature; these latter vascular beds can now be interrogated for the first time with ultrasound. The effect of microbubbles depends on the fact that gases are compressible, whereas tissue is relatively incompressible. The current chapter focuses on the biology, clinical applications, and future advancements in contrast-enhanced ultrasound. Developments in material engineering and biotechnology will continue to improve the current standards and expectations; a better understanding of the dynamic flow of microvascular beds and focused delivery of biological compounds should enhance end-organ imaging and therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gramiak R, Shah P, Kramer DH. Ultrasound cardiography: contrast studies in anatomy and function. Radiology. 1969;92:939.

    Article  CAS  PubMed  Google Scholar 

  2. Gramiak R, Shah P. Echocardiography of the aortic root. Investig Radiol. 1968;3:356–66.

    Article  CAS  Google Scholar 

  3. Mulvagh SL, et al. Second harmonic imaging of an intravenously administered echocardiographic contrast agent: visualization of coronary arteries and measurements of coronary blood flow. J Am Coll Cardiol. 1996;27:1519–25.

    Article  CAS  PubMed  Google Scholar 

  4. Ophir J, Parker KJ. Contrast agents in diagnostic ultrasound. Ultrasound Med Biol. 1989;15(4):319–33.

    Article  CAS  PubMed  Google Scholar 

  5. Section 6 – mechanical bioeffects in the presence of gas-carrier ultrasound contrast agents. American Institute of Ultrasound in Medicine. J Ultrasound Med. 2000;19(2):120–42, 154–68. https://doi.org/10.7863/jum.2000.19.2.120. PMID: 10680618; PMCID: PMC2041884.

  6. Cosgrove D. Ultrasound contrast agents: an overview. Eur J Radiol. 2006;60(3):324–30.

    Article  PubMed  Google Scholar 

  7. Calliada F, et al. Ultrasound contrast agents: basic principles. Eur J Radiol. 1998;27(Suppl 2):S157.

    Article  PubMed  Google Scholar 

  8. Correas JM, et al. Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts. Eur Radiol. 2001;11(8):1316–28.

    Article  CAS  PubMed  Google Scholar 

  9. Correas JM, et al. Ultrasound contrast agents. Examples of blood pool agents. Acta Radiol Suppl. 1997;412:101–12.

    CAS  PubMed  Google Scholar 

  10. Blomley MJ, et al. Stimulated acoustic emission to image a late liver and spleen-specific phase of Levovist in normal volunteers and patients with and without liver disease. Ultrasound Med Biol. 1999;25(9):1341–52.

    Article  CAS  PubMed  Google Scholar 

  11. Marelli C. Preliminary experience with NC100100, a new ultrasound contrast agent for intravenous injection. Eur Radiol. 1999;9(Suppl 3):S343–6.

    Article  PubMed  Google Scholar 

  12. Harvey CJ, et al. Advances in ultrasound. Clin Radiol. 2002;57(3):157–77.

    Article  PubMed  Google Scholar 

  13. Burns PN. Harmonic imaging with ultrasound contrast agents. Clin Radiol. 1996;51(Suppl 1):50–5.

    PubMed  Google Scholar 

  14. Tiemann K, et al. Real-time contrast echo assessment of myocardial perfusion at low emission power: first experimental and clinical results using power pulse inversion imaging. Echocardiography. 1999;16(8):799–809.

    Article  PubMed  Google Scholar 

  15. Claudon M, et al. Renal arteries in patients at risk of renal arterial stenosis: multicenter evaluation of the echoenhancer SH U 508A at color and spectral Doppler US. Levovist Renal Artery Stenosis Study Group. Radiology. 2000;214(3):739–46.

    Article  CAS  PubMed  Google Scholar 

  16. Cohen JL, et al. Improved left ventricular endocardial border delineation and opacification with OPTISON (FS069), a new echocardiographic contrast agent. Results of a phase III multicenter trial. J Am Coll Cardiol. 1998;32(3):746–52.

    Article  CAS  PubMed  Google Scholar 

  17. Myreng Y, et al. Safety of the transpulmonary ultrasound contrast agent NC100100: a clinical and haemodynamic evaluation in patients with suspected or proved coronary artery disease. Heart. 1999;82(3):333–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaps M, et al. Safety and ultrasound-enhancing potentials of a new sulfur hexafluoride-containing agent in the cerebral circulation. J Neuroimaging. 1999;3:150–4.

    Article  Google Scholar 

  19. Grayburn PA, et al. Phase III multicenter trial comparing the efficacy of 2% dodecafluoropentane emulsion (EchoGen) and sonicated 5% human albumin (Albunex) as ultrasound contrast agents in patients with suboptimal echocardiograms. J Am Coll Cardiol. 1998;32(1):230–6.

    Article  CAS  PubMed  Google Scholar 

  20. Averkiou M, et al. Ultrasound contrast imaging research. Ultrasound Q. 2003;19(1):27–37.

    Article  PubMed  Google Scholar 

  21. Lindner JR, et al. Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- and complement-mediated adherence to activated leukocytes. Circulation. 2000;101(6):668–75.

    Article  CAS  PubMed  Google Scholar 

  22. Lindner JR, et al. Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. Circulation. 2000;102(5):531–8.

    Article  CAS  PubMed  Google Scholar 

  23. Unger EC, et al. In vitro studies of a new thrombus-specific ultrasound contrast agent. Am J Cardiol. 1998;81(12A):58G–61G.

    Article  CAS  PubMed  Google Scholar 

  24. Schumann PA, et al. Targeted-microbubble binding selectively to GPIIb IIIa receptors of platelet thrombi. Investig Radiol. 2002;37(11):587–93.

    Article  CAS  Google Scholar 

  25. Tachibana K, Tachibana S. Albumin microbubble echocontrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation. 1995;92(5):1148–50.

    Article  CAS  PubMed  Google Scholar 

  26. Klibanov AL. Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging. Adv Drug Deliv Rev. 1999;37(1–3):139–57.

    Article  CAS  PubMed  Google Scholar 

  27. Lidner JR. Evolving applications for contrast ultrasound. Am J Cardiol. 2002;90(10A):72J–80J.

    Article  Google Scholar 

  28. Klibanov AL. Ligand-carrying gas filed microbubbles: ultrasound contrast agents for targeted molecular imaging. Bioconjug Chem. 2005;16:9–17.

    Article  CAS  PubMed  Google Scholar 

  29. Ferrara KW, Borden MA, Zhang H. Lipid shelled vehicles: engineering for ultrasound molecular imaging and drug delivery. Acc Chem Res. 2009;42:881–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ayida G, et al. Hysterosalpingo-contrast sonography (HyCoSy) using Echovist-200 in the outpatient investigation of infertility patients. Br J Radiol. 1996;69(826):910–3.

    Article  CAS  PubMed  Google Scholar 

  31. Darge K, et al. Reflux in young patients: comparison of voiding US of the bladder and retrovesical space with echo enhancement versus voiding cystourethrography for diagnosis. Radiology. 1999;210(1):201–7.

    Article  CAS  PubMed  Google Scholar 

  32. Blomley MJ, et al. Improved imaging of liver metastases with stimulated acoustic emission in the late phase of enhancement with the US contrast agent SH U 508A: early experience. Radiology. 1999;210(2):409–16.

    Article  CAS  PubMed  Google Scholar 

  33. Burns PN, Hope Simpson D, Averkiou MA. Nonlinear imaging. Ultrasound Med Biol. 2000;26(Suppl 1):S19–22.

    Article  PubMed  Google Scholar 

  34. Simpson DH, Burns PN, Averkiou MA. Techniques for perfusion imaging with microbubble contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control. 2001;48(6):1483–94.

    Article  CAS  PubMed  Google Scholar 

  35. Clevert DA, et al. Imaging of aortic abnormalities with contrast-enhanced ultrasound. A pictorial comparison with CT. Eur Radiol. 2007;17:2991–3000.

    Article  PubMed  Google Scholar 

  36. Clevert DA, Kopp R. Contrast enhanced ultrasound for endovascular grafting in infrarenal abdominal aortic aneurysm in a single patient with risk factors for the use of iodinated contrast. J Vasc Interv Radiol. 2008;19:1241–5.

    Article  PubMed  Google Scholar 

  37. Avasthi PS, Voyles WF, Greene ER. Noninvasive diagnosis of renal artery stenosis by echo-Doppler velocimetry. Kidney Int. 1984;25(5):824–9.

    Article  CAS  PubMed  Google Scholar 

  38. Norris CS, et al. Noninvasive evaluation of renal artery stenosis and renovascular resistance. Experimental and clinical studies. J Vasc Surg. 1984;1(1):192–201.

    Article  CAS  PubMed  Google Scholar 

  39. Berland LL, et al. Renal artery stenosis: prospective evaluation of diagnosis with color duplex US compared with angiography. Work in progress. Radiology. 1990;174(2):421–3.

    Article  CAS  PubMed  Google Scholar 

  40. Desberg AL, et al. Renal artery stenosis: evaluation with color Doppler flow imaging. Radiology. 1990;177(3):749–53.

    Article  CAS  PubMed  Google Scholar 

  41. Lacourciere Y, et al. Impact of Levovist ultrasonographic contrast agent on the diagnosis and management of hypertensive patients with suspected renal artery stenosis: a Canadian multicentre pilot study. Can Assoc Radiol J. 2002;53(4):219–27.

    PubMed  Google Scholar 

  42. Wei K, et al. Quantification of renal blood flow with contrast-enhanced ultrasound. J Am Coll Cardiol. 2001;37(4):1135–40.

    Article  CAS  PubMed  Google Scholar 

  43. Wei K, et al. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation. 1998;97(5):473–83.

    Article  CAS  PubMed  Google Scholar 

  44. Correas JM, et al. Contrast-enhanced ultrasonography: renal applications. J Radiol. 2003;84(12 Pt 2): 2041–54.

    CAS  PubMed  Google Scholar 

  45. Lan HY, et al. Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol. 2003;14(6):1535–48.

    Article  CAS  PubMed  Google Scholar 

  46. Shaw LJ, et al. Use of an intravenous contrast agent (Optison) to enhance echocardiography: efficacy and cost implications. Optison Multicenter Study Group. Am J Manag Care. 1998;4(Spec No):SP169–76.

    Google Scholar 

  47. Kitzman DW, et al. Efficacy and safety of the novel ultrasound contrast agent perflutren (definity) in patients with suboptimal baseline left ventricular echocardiographic images. Am J Cardiol. 2000;86(6):669–74.

    Article  CAS  PubMed  Google Scholar 

  48. Hundley WG, et al. Administration of an intravenous perfluorocarbon contrast agent improves echocardiographic determination of left ventricular volumes and ejection fraction: comparison with cine magnetic resonance imaging. J Am Coll Cardiol. 1998;32(5):1426–32.

    Article  CAS  PubMed  Google Scholar 

  49. Yoshida S, et al. Evaluation of flash echo imaging of the canine gastrointestinal tract. J Ultrasound Med. 2000;19(11):751–5.

    Article  CAS  PubMed  Google Scholar 

  50. Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    Article  CAS  PubMed  Google Scholar 

  51. Lindner JR. Detection of inflamed plaques with contrast ultrasound. Am J Cardiol. 2002;90(10C):32L–5L.

    Article  PubMed  Google Scholar 

  52. Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis. 2003;170(2):191–203.

    Article  CAS  PubMed  Google Scholar 

  53. Villanueva FS, et al. Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation. 1998;98(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  54. Demos SM, et al. In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J Am Coll Cardiol. 1999;33(3):867–75.

    Article  CAS  PubMed  Google Scholar 

  55. Leong-Poi H, et al. Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation. 2003;107(3):455–60.

    Article  CAS  PubMed  Google Scholar 

  56. Hata J, et al. Evaluation of bowel ischemia with contrast enhanced US: initial experience. Radiology. 2005;236(2):712–5.

    Article  PubMed  Google Scholar 

  57. Van Damme H, Vivario M. Pathologic aspects of carotid plaques: surgical and clinical significance. Int Angiol. 1993;12(4):299–311.

    PubMed  Google Scholar 

  58. Kono Y, et al. Carotid arteries: contrast-enhanced US angiography – preliminary clinical experience. Radiology. 2004;230(2):561–8.

    Article  PubMed  Google Scholar 

  59. Clevert DA, et al. Imaging of carotid arterial diseases with contrast-enhanced ultrasound (CEUS). Eur J Radiol. 2011;80(1):68–76.

    Article  CAS  PubMed  Google Scholar 

  60. Bendick PJ, et al. Efficacy of ultrasound scan contrast agents in the noninvasive follow-up of aortic stent grafts. J Vasc Surg. 2003;37(2):381–5.

    Article  PubMed  Google Scholar 

  61. Napoli V, et al. Abdominal aortic aneurysm: contrast enhanced US for missed endoleaks after endoluminal repair. Radiology. 2004;233(1):217–25.

    Article  PubMed  Google Scholar 

  62. Bargellini I, et al. Type II lumbar endoleaks: hemodynamic differentiation by contrast-enhanced ultrasound scanning and influence on aneurysm enlargement after endovascular aneurysm repair. J Vasc Surg. 2005;41(1):10–8.

    Article  PubMed  Google Scholar 

  63. Henao EA, et al. Contrast-enhanced duplex surveillance after endovascular abdominal aortic aneurysm repair: improved efficacy using a continuous infusion technique. J Vasc Surg. 2006;43(2):259–64. Discussion 264.

    Article  PubMed  Google Scholar 

  64. Thompson MM, et al. Comparison of computed tomography and duplex imaging in assessing aortic morphology following endovascular aneurysm repair. Br J Surg. 1998;85:346–50.

    Article  CAS  PubMed  Google Scholar 

  65. Kopp R, et al. First experience using intraoperative contrast-enhanced ultrasound during endovascular aneurysm repair for infrarenal aortic aneurysms. J Vasc Surg. 2010;51(5):1103–10.

    Article  PubMed  Google Scholar 

  66. Ubbink DT, Legemate DA, Llull JB. Color-flow duplex scanning of the leg arteries by use of a new echo enhancing agent. J Vasc Surg. 2002;35(2):392–6.

    Article  PubMed  Google Scholar 

  67. Leong-Poi H. Molecular imaging using contrast-enhanced ultrasound: evaluation of angiogenesis and cell therapy. Cardiovasc Res. 2009;84(2):190–200.

    Article  CAS  PubMed  Google Scholar 

  68. Buysschaert I, Carmeliet P, Dewerchin M. Clinical and fundamental aspects of angiogenesis and anti-angiogenesis. Acta Clin Belg. 2007;62:162–9.

    Article  CAS  PubMed  Google Scholar 

  69. Eliceri BP, Cheresh DA. Role of alpha v integrins during angiogenesis. Cancer J. 2000;6(Suppl 3):S245–9.

    Google Scholar 

  70. Leong-Poi H, et al. Assessment of endogenous and therapeutic arteriogenesis by contrast ultrasound molecular imaging of integrin expression. Circulation. 2005;111:32.

    Article  Google Scholar 

  71. Kuliszewski MA, et al. Molecular imaging of endothelial progenitor cell engraftment using contrast-enhanced ultrasound and targeted microbubbles. Cardiovasc Res. 2009;83:817–23.

    Article  Google Scholar 

  72. Cui W, et al. A new method for stem cell imaging using contrast ultrasound. Circulation. 2008;118:S642.

    Article  Google Scholar 

  73. Tarantino L, et al. Diagnosis of benign and malignant portal vein thrombosis in cirrhotic patients with hepatocellular carcinoma: color Doppler US, contrast-enhanced US, and fine-needle biopsy. Abdom Imaging. 2006;31(5):537–44.

    Article  CAS  PubMed  Google Scholar 

  74. Janssen HLA, et al. Extrahepatic portal vein thrombosis: aetiology and determinants of survival. Gut. 2001;49:720–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Amitrano L, et al. Risk factors and clinical presentation of portal vein thrombosis in patients with liver cirrhosis. J Hepatol. 2004;40:736–41.

    Article  PubMed  Google Scholar 

  76. Claudon M, et al. Guidelines and good clinical practice recommendations for contras enhanced ultrasound (CEUS) update 2008. Ultraschall Med. 2008;29:28–44.

    Article  CAS  PubMed  Google Scholar 

  77. Venous vascularization and inflammation on Contrast-enhanced Ultrasound (CEUS) in patients with thrombosis. http://clinicaltrials.gov/ct2/show/NCT01367769?term=Venous+vascularization+and+inflammation+on+contrast+enhanced+ultrasound&rank=1

  78. Weller GE, et al. Modulating targeted adhesion of an ultrasound contrast agent to dysfunctional endothelium. Ann Biomed Eng. 2002;30(8):1012–9.

    Article  PubMed  Google Scholar 

  79. Weller GE, et al. Targeted ultrasound contrast agents: in vitro assessment of endothelial dysfunction and multitargeting to ICAM-1 and sialyl Lewis(x). Biotechnol Bioeng. 2005;92(6):780–8.

    Article  CAS  PubMed  Google Scholar 

  80. Galperin A, Margel S. Synthesis and characterization of radiopaque magnetic core-shell nanoparticles for X-ray imaging applications. J Biomed Mater Res B Appl Biomater. 2007;83(2):490–8.

    Article  PubMed  Google Scholar 

  81. Norton SJ, Vo Dinh T. Imaging the distribution of magnetic nanoparticles with ultrasound. IEEE Trans Med Imaging. 2007;26:660–6.

    Article  PubMed  Google Scholar 

  82. Oh J, et al. Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound. Nanotechnology. 2006;17:4183–90.

    Article  CAS  PubMed  Google Scholar 

  83. Nabavi DG, Droste DW, Schulte-Altedorneburg G, Kemény V, Panzica M, Weber S, Ringelstein EB. Diagnostic benefit of echocontrast enhancement for the insufficient transtemporal bone window. J Neuroimaging. 1999;9:102–7.

    Article  CAS  PubMed  Google Scholar 

  84. Senior R, Becher H, Monaghan M, Agati L, Zamorano J, Vanoverschelde JL, Nihoyannopoulos P. Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography. Eur J Echocardiogr. 2009;10(2):194–212.

    Article  PubMed  Google Scholar 

  85. Feinstein SB, Coll B, Staub D, Adam D, Schinkel AF, ten Cate FJ, Thomenius K. Contrast enhanced ultrasound imaging. J Nucl Cardiol. 2010;17(1):106–15.

    Article  PubMed  Google Scholar 

  86. Schinkel AF, Kaspar M, Staub D. Contrast-enhanced ultrasound: clinical applications in patients with atherosclerosis. Int J Cardiovasc Imaging. 2016;32(1):35–48.

    Article  PubMed  Google Scholar 

  87. Heiserman JE, Dean BL, Hodak JA, Flom RA, Bird CR, Drayer BP, Fram EK. Neurologic complications of cerebral angiography. AJNR Am J Neuroradiol. 1994;15(8):1401–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Qin S, Caskey CF, Ferrara KW. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys Med Biol. 2009;54(6):R27.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Martin MJ, Chung EM, Goodall AH, Martina A, Ramnarine KV, Fan L, Hainsworth SV, Naylor AR, Evans DH. Enhanced detection of thromboemboli with the use of targeted microbubbles. Stroke. 2007;38:2726–32.

    Article  PubMed  Google Scholar 

  90. Brooks LD, Nicoletto HA, Bennett ER, Laskowitz DT, Smith SW. Simultaneous bilateral real-time 3-D transcranial ultrasound imaging at 1 MHz through poor acoustic windows. Ultrasound Med Biol. 2013;39(4):721–34.

    Article  Google Scholar 

  91. Ley-Pozo J, Ringelstein EB, Willmes K. Noninvasive detection of occlusive disease of the carotid siphon and middle cerebral artery. Ann Neurol. 1990;28:640–7.

    Article  CAS  PubMed  Google Scholar 

  92. Williams AB, Williams ZB. Imaging modalities for endoleak surveillance. J Med Radiat Sci. 2021 Jun 18. https://doi.org/10.1002/jmrs.522. Epub ahead of print. PMID: 34145780.https://onlinelibrary.wiley.com/doi/10.1002/jmrs.522.

  93. Brewster DC, Jones JE, Chung TK, Lamuraglia GM, Kwolek CJ, Watkins MT, Hodgman TM, Cambria RP. Long-term outcomes after endovascular abdominal aortic aneurysm repair: the first decade. Ann Surg. 2006 Sep;244(3):426–38. https://doi.org/10.1097/01.sla.0000234893.88045.dc. PMID: 16926569; PMCID: PMC1856532.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1856532/.

  94. Karthikesalingam A, Al-Jundi W, Jackson D, Boyle JR, Beard JD, Holt PJ, Thompson MM. Systematic review and meta-analysis of duplex ultrasonography, contrast-enhanced ultrasonography or computed tomography for surveillance after endovascular aneurysm repair. Br J Surg. 2012 Nov;99(11):1514–23. https://doi.org/10.1002/bjs.8873. Epub 2012 Sep 21. PMID: 23001681.https://academic.oup.com/bjs/article/99/11/1514/6138619.

  95. Cantisani V, Ricci P, Grazhdani H, Napoli A, Fanelli F, Catalano C, Galati G, D’Andrea V, Biancari F, Passariello R. Prospective comparative analysis of colour-Doppler ultrasound, contrast-enhanced ultrasound, computed tomography and magnetic resonance in detecting endoleak after endovascular abdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg. 2011 Feb;41(2):186–92. https://doi.org/10.1016/j.ejvs.2010.10.003. Epub 2010 Nov 20. PMID: 21095141.https://pubmed.ncbi.nlm.nih.gov/21095141/.

  96. Avgerinos ED, Chaer RA, Makaroun MS. Type II endoleaks. J Vasc Surg. 2014 Nov;60(5):1386-1391. https://doi.org/10.1016/j.jvs.2014.07.100. Epub 2014 Aug 28. PMID: 25175637.https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S0741521414014815?returnurl=https:%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0741521414014815%3Fshowall%3Dtrue&referrer=https:%2F%2Fpubmed.ncbi.nlm.nih.gov%2F.

  97. Abbas A, Hansrani V, Sedgwick N, Ghosh J, McCollum CN. 3D contrast enhanced ultrasound for detecting endoleak from endovascular aneurysm repair (EVAR). Eur J Vasc Endovasc Surg 2014; 47: 487–92.https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S1078588414000598?returnurl=https:%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1078588414000598%3Fshowall%3Dtrue&referrer=https:%2F%2Fpubmed.ncbi.nlm.nih.gov%2F.

  98. Tantawy TG, Seriki D, Rogers S, Katsogridakis E, Ghosh J. Endovascular Aneurysm Repair Assisted by CO2 Digital Subtraction Angiography and Intraoperative Contrast-Enhanced Ultrasonography: Single-Center Experience. Ann Vasc Surg. 2021 Jan;70:459–466. https://doi.org/10.1016/j.avsg.2020.06.036. Epub 2020 Jun 27. PMID: 32599109.https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S0890509620305379?returnurl=https:%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0890509620305379%3Fshowall%3Dtrue&referrer=https:%2F%2Fpubmed.ncbi.nlm.nih.gov%2F

  99. Johnsen L, Hisdal J, Jonung T, Braaten A, Pedersen G. Contrast-enhanced ultrasound detects type II endoleaks during follow-up for endovascular aneurysm repair. J Vasc Surg. 2020 Dec;72(6):1952–1959. https://doi.org/10.1016/j.jvs.2020.02.020. Epub 2020 Apr 2. PMID: 32249048.https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S0741521420302925?returnurl=https:%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0741521420302925%3Fshowall%3Dtrue&referrer=https:%2F%2Fpubmed.ncbi.nlm.nih.gov%2F.

  100. Chaikof EL, Dalman RL, Eskandari MK, Jackson BM, Lee WA, Mansour MA, Mastracci TM, Mell M, Murad MH, Nguyen LL, Oderich GS, Patel MS, Schermerhorn ML, Starnes BW. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg. 2018 Jan;67(1):2-77.e2. https://doi.org/10.1016/j.jvs.2017.10.044. PMID: 29268916. https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S0741521417323698?scrollTo=%23hl0005968

  101. Bianchini Massoni C, Perini P, Fanelli M, Ucci A, Azzarone M, Rossi G, D'Ospina RM, Freyrie A. The Utility of Intraoperative Contrast-enhanced Ultrasound for Immediate Treatment of Type Ia Endoleak during EVAR: Initial Experience. Acta Biomed. 2021 May 12;92(2):e2021046. https://doi.org/10.23750/abm.v92i2.9154. PMID: 33988179; PMCID: PMC8182572.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8182572/

  102. Frenzel F, Kubale R, Massmann A, Raczeck P, Jagoda P, Schlueter C, Stroeder J, Buecker A, Minko P. Artifacts in Contrast-Enhanced Ultrasound during Follow-up after Endovascular Aortic Repair: Impact on Endoleak Detection in Comparison with Computed Tomography Angiography. Ultrasound Med Biol. 2021 Mar;47(3):488–498. https://doi.org/10.1016/j.ultrasmedbio.2020.11.032. Epub 2021 Jan 6. PMID: 33358051.https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S0301562920305408?scrollTo=%23hl0000337.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan B. Lumsden .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sinha, K., Garami, Z., Lumsden, A.B. (2022). Contrast-Enhanced Ultrasound. In: AbuRahma, A.F., Perler, B.A. (eds) Noninvasive Vascular Diagnosis. Springer, Cham. https://doi.org/10.1007/978-3-030-60626-8_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60626-8_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60625-1

  • Online ISBN: 978-3-030-60626-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics