Skip to main content

Concept of Metabolic Surgery

  • Reference work entry
  • First Online:
Obesity, Bariatric and Metabolic Surgery

Abstract

The terms “bariatric surgery” and “metabolic surgery” are often used interchangeably. Although in some circumstances this may be correct, there are critical differences between the two which should be acknowledged. Bariatric surgery was originally conceived as surgical procedures aiming at sustained weight loss – an effect, at the time, largely attributed to caloric reduction. With advancement of our understanding, we now know that such surgeries are associated with significant improvements in metabolic dysfunction associated with obesity and may be beneficial to even those with moderate obesity. This prompted the coining of the term “metabolic surgery” which can be used to describe the same surgical procedures typically associated with bariatric surgery but with specific indications and aims beyond weight loss alone, namely, the improvement in obesity-related metabolic disease. In addition to the more than 10 randomized controlled trials now establishing bariatric surgery as the most effective treatment for patients with obesity and type 2 diabetes mellitus, there are mechanistic studies demonstrating the critical role of the gastrointestinal (GI) tract in the development and regulation of metabolic dysfunction. In light of these advances, came the recognition of the possibility of developing a surgical approach aimed specifically at treating patients with metabolic dysfunction, including those beyond the traditionally accepted body mass index (BMI) treatment thresholds. This shift in the focus for treatment has seen the widespread adoption of the term “metabolic surgery” to more accurately reflect the indications and aims of surgery from weight loss centric metrics alone to those looking at improvements in obesity-related metabolic disease. Further advancing the field requires ongoing research into the pre- and postoperative management of diabetes-related comorbidity, identifying means of sustaining surgery-induced metabolic improvements and the development of postoperative treatment algorithms particularly those for patients with persistent or recurrent disease including the use of long-term pharmacotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buchwald H, Varco RL. Ileal bypass in patients with hypercholesterolemia and atherosclerosis. Preliminary report on therapeutic potential. JAMA. 1966;196(7):627–30.

    Article  CAS  Google Scholar 

  2. Herbst CA, Hughes TA, Gwynne JT, Buckwalter JA. Gastric bariatric operation in insulin-treated adults. Surgery. 1984;95(2):209–14.

    CAS  Google Scholar 

  3. Ahmad U, Danowski TS, Nolan S, Stephan T, Sunder JH, Bahl VK. Remissions of diabetes mellitus after weight reduction by jejunoileal bypass. Diabetes Care. 1978;1(3):158–65.

    Article  CAS  Google Scholar 

  4. BARNES CG. Hypoglycaemia following partial gastrectomy; report of three cases. Lancet. 1947;2(6476):536–9.

    Article  CAS  Google Scholar 

  5. Pories WJ, MacDonald KG, Flickinger EG, Dohm GL, Sinha MK, Barakat HA, et al. Is type II diabetes mellitus (NIDDM) a surgical disease? Ann Surg. 1992;215(6):633–42; discussion 43.

    Article  CAS  Google Scholar 

  6. Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222(3):339–50; discussion 50–2.

    Article  CAS  Google Scholar 

  7. Rubino F, Gagner M, Gentileschi P, Kini S, Fukuyama S, Feng J, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg. 2004;240(2):236–42.

    Article  Google Scholar 

  8. Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9.

    Article  Google Scholar 

  9. Sjöström L, Narbro K, Sjöström CD, Karason K, Larsson B, Wedel H, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357(8):741–52.

    Article  Google Scholar 

  10. Sjöström L, Peltonen M, Jacobson P, Sjöström CD, Karason K, Wedel H, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307(1):56–65.

    Article  Google Scholar 

  11. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric surgery versus intensive medical therapy for diabetes – 5-year outcomes. N Engl J Med. 2017;376(7):641–51.

    Article  Google Scholar 

  12. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386(9997):964–73.

    Article  Google Scholar 

  13. Liang Z, Wu Q, Chen B, Yu P, Zhao H, Ouyang X. Effect of laparoscopic Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus with hypertension: a randomized controlled trial. Diabetes Res Clin Pract. 2013;101(1):50–6.

    Article  Google Scholar 

  14. Dixon JB, O'Brien PE, Playfair J, Chapman L, Schachter LM, Skinner S, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299(3):316–23.

    Article  CAS  Google Scholar 

  15. Ding SA, Simonson DC, Wewalka M, Halperin F, Foster K, Goebel-Fabbri A, et al. Adjustable gastric band surgery or medical management in patients with type 2 diabetes: a randomized clinical trial. J Clin Endocrinol Metab. 2015;100(7):2546–56.

    Article  CAS  Google Scholar 

  16. Ikramuddin S, Korner J, Lee WJ, Connett JE, Inabnet WB, Billington CJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the Diabetes Surgery Study randomized clinical trial. JAMA. 2013;309(21):2240–9.

    Article  CAS  Google Scholar 

  17. Halperin F, Ding SA, Simonson DC, Panosian J, Goebel-Fabbri A, Wewalka M, et al. Roux-en-Y gastric bypass surgery or lifestyle with intensive medical management in patients with type 2 diabetes: feasibility and 1-year results of a randomized clinical trial. JAMA Surg. 2014;149(7):716–26.

    Article  Google Scholar 

  18. Parikh M, Chung M, Sheth S, McMacken M, Zahra T, Saunders JK, et al. Randomized pilot trial of bariatric surgery versus intensive medical weight management on diabetes remission in type 2 diabetic patients who do NOT meet NIH criteria for surgery and the role of soluble RAGE as a novel biomarker of success. Ann Surg. 2014;260(4):617–22; discussion 22–4.

    Article  Google Scholar 

  19. Kashyap SR, Bhatt DL, Wolski K, Watanabe RM, Abdul-Ghani M, Abood B, et al. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care. 2013;36(8):2175–82.

    Article  CAS  Google Scholar 

  20. Wentworth JM, Playfair J, Laurie C, Ritchie ME, Brown WA, Burton P, et al. Multidisciplinary diabetes care with and without bariatric surgery in overweight people: a randomised controlled trial. Lancet Diabetes Endocrinol. 2014;2(7):545–52.

    Article  Google Scholar 

  21. Courcoulas AP, Goodpaster BH, Eagleton JK, Belle SH, Kalarchian MA, Lang W, et al. Surgical vs medical treatments for type 2 diabetes mellitus: a randomized clinical trial. JAMA Surg. 2014;149(7):707–15.

    Article  Google Scholar 

  22. Cummings DE, Arterburn DE, Westbrook EO, Kuzma JN, Stewart SD, Chan CP, et al. Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomised controlled trial. Diabetologia. 2016;59(5):945–53.

    Article  CAS  Google Scholar 

  23. Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KG, Zimmet PZ, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Diabetes Care. 2016;39(6):861–77.

    Article  CAS  Google Scholar 

  24. Dixon JB, Zimmet P, Alberti KG, Rubino F. Prevention IDFToEa. Bariatric surgery: an IDF statement for obese type 2 diabetes. Diabet Med. 2011;28(6):628–42.

    Article  CAS  Google Scholar 

  25. Davies MJ, D'Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669–701.

    Article  Google Scholar 

  26. Brethauer SA, Aminian A, Romero-Talamás H, Batayyah E, Mackey J, Kennedy L, et al. Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg. 2013;258(4):628–36; discussion 36–7.

    Article  Google Scholar 

  27. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Capristo E, et al. Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes: 10-year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2021;397(10271):293–304.

    Article  Google Scholar 

  28. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    Article  CAS  Google Scholar 

  29. IDF Diabetes Atlas. 9th ed. Brussels: International Diabetes Federation; 2019.

    Google Scholar 

  30. Pournaras DJ, Aasheim ET, Bueter M, Ahmed AR, Welbourn R, Olbers T, et al. Effect of bypassing the proximal gut on gut hormones involved with glycemic control and weight loss. Surg Obes Relat Dis. 2012;8(4):371–4.

    Article  Google Scholar 

  31. Pournaras DJ, Osborne A, Hawkins SC, Vincent RP, Mahon D, Ewings P, et al. Remission of type 2 diabetes after gastric bypass and banding: mechanisms and 2 year outcomes. Ann Surg. 2010;252(6):966–71.

    Article  Google Scholar 

  32. Panunzi S, De Gaetano A, Carnicelli A, Mingrone G. Predictors of remission of diabetes mellitus in severely obese individuals undergoing bariatric surgery: do BMI or procedure choice matter? A meta-analysis. Ann Surg. 2015;261(3):459–67.

    Article  Google Scholar 

  33. Cummings DE, Cohen RV. Bariatric/metabolic surgery to treat type 2 diabetes in patients with a BMI <35 kg/m2. Diabetes Care. 2016;39(6):924–33.

    Article  Google Scholar 

  34. Sudlow A, le Roux CW, Pournaras DJ. Review of multimodal treatment for type 2 diabetes: combining metabolic surgery and pharmacotherapy. Ther Adv Endocrinol Metab. 2019;10:2042018819875407.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri J. Pournaras .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sudlow, A.C., le Roux, C.W., Pournaras, D.J. (2023). Concept of Metabolic Surgery. In: Agrawal, S. (eds) Obesity, Bariatric and Metabolic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-60596-4_100

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60596-4_100

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60595-7

  • Online ISBN: 978-3-030-60596-4

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics