Skip to main content

Molecular Structures from Gas-Phase Electron Diffraction

  • Chapter
  • First Online:
Accurate Structure Determination of Free Molecules

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 105))

Abstract

The determination of thermal-average and equilibrium molecular structures by conventional electron diffraction is reviewed. The history and theoretical basis of the method as well as the electron diffraction experiment are briefly described. The significance of different structure types is explained. A particular emphasis is put on the determination of semiexperimental equilibrium structure from electron diffraction data taking into account vibrational corrections calculated with quantum-chemical force fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen B, Seip HM, Strand TG, Stølevik R (1969) Computer programs for the structure determination of gaseous molecules from electron diffraction data. Acta Chem Scand 23:3224–3234

    Article  CAS  Google Scholar 

  • Bartell LS (1955) Effects of anharmonicity of vibration on the diffraction of electrons by free molecules. J Chem Phys 23:1219–1222

    Article  CAS  Google Scholar 

  • Bartell LS (1963) Calculation of mean atomic positions in vibrating polyatomic molecules. J Chem Phys 38:1827–1833

    Article  CAS  Google Scholar 

  • Bartell LS (1988) Status of electron scattering theory with respect to accuracy in structure analysis. In: Hargittai I, Hargittai M (eds) Stereochemical applications of gas-phase electron diffraction. Part A. The electron diffraction technique. VCH Publishers Inc, New York, pp 55–84

    Google Scholar 

  • Bastiansen O, Hassel O, Risberg E (1955) The Oslo electron diffraction units for gas work. Acta Chem Scand 9:232–238

    Article  CAS  Google Scholar 

  • Bastiansen O, Kveseth K, Møllendal H (1979) Structure of molecules with large amplitude motion as determined from electron-diffraction studies in the gas phase. Top Curr Chem 81:99–172

    Article  CAS  Google Scholar 

  • Belyakov AV, Baskakov AA, Berger RJF, Mitzel NW, Oberhammer H, Arnason I, Wallevik SÒ (2012) Molecular structure and conformational preferences of gaseous 1-iodo-1-silacyclohexane. J Mol Struct 1012:126–130

    Article  CAS  Google Scholar 

  • Ben-Nun M, Martínez TJ, Weber PM, Wilson KR (1996) Direct imaging of excited electronic states using diffraction techniques: theoretical consideration. Chem Phys Lett 262:405–414

    Article  CAS  Google Scholar 

  • Berger RJF, M. H, Hayes SA, Mitzel NW (2009) An improved gas electron diffractometer—the instrument, data collection, reduction and structure refinement procedures. Z Naturforsch (B) 64(11–12):1259–1268

    Google Scholar 

  • Brockway LO, Bartell LS (1954) A high precision electron-diffraction unit for gases. Rev Sci Instrum 25:569–575

    Article  CAS  Google Scholar 

  • Carley RE, Heesel E, Fielding HH (2005) Femtosecond lasers in gas phase chemistry. Chem Soc Rev 34:949–969

    Article  CAS  PubMed  Google Scholar 

  • Cyvin SJ (1968) Molecular vibrations and mean square amplitudes. Elsevier, Amsterdam, p 424

    Google Scholar 

  • Dakkouri M, Kochikov IV, Tarasov YI, Vogt N, Vogt J, Bitschenauer R (2002) Equilibrium structure and large amplitude motion investigation of 1,4-disilacyclohexa-2,5-diene by means of electron diffraction, vibrational spectroscopic data, and ab initio calculations. J Mol Struct 607:195–206

    Article  CAS  Google Scholar 

  • Davisson C, Germer LH (1927) The scattering of electrons by a single crystal of nickel. Nature 119:558–560

    Article  CAS  Google Scholar 

  • Debye P, Bewilogua P, Ehrhardt F (1929) Zerstreuung von Röntgenstrahlen an einzelnen Molekülen (vorläufige Mitteilung) (Dispersion of X-rays by single molecules). Phys Z 30:84–87 (in German)

    CAS  Google Scholar 

  • Finbak C (1937) Electron diffraction by gases. Avh Norsk Vidensk-Akad Oslo 13:1–17

    Google Scholar 

  • Fink M, Kohl DA (1988) Temperature dependence of electron diffraction structural parameters: theory and experiment. In: Hargittai I, Hargittai M (eds) Stereochemical applications of gas-phase electron diffraction. Part A. The electron diffraction technique. VCH Publishers Inc, New York, pp 139–190

    Google Scholar 

  • Frost AV, Akishin PA, Gurvich LV, Kurkchi GA, Konstantinov AA (1953) Electron diffraction investigation of molecular structure. Vestn Mosk Univ Ser Khim 8(12):85–95

    CAS  Google Scholar 

  • Gershikov AG (1982) Anharmonic theory of electron scattering by polyatomic molecules. Khim Fiz 5:587–593 (in Russian)

    Google Scholar 

  • Gershikov AG, Spiridonov VP (1982) Anharmonic force field of CO2 as determined by gas-phase electron diffraction study. J Mol Struct 96:141–149

    Article  CAS  Google Scholar 

  • Gershikov AG, Spiridonov VP (1986) Semirigid model of the bending-rotational Hamiltonian in electron diffraction analysis of triatomic molecules. I. Theory. Zh Strukt Khim 27:30–35/699–704 (Engl Transl)

    Google Scholar 

  • Gershikov AG, Subbotina NY, Girichev GV (1986) Semirigid model of the bending-rotational Hamiltonian in electron diffraction analysis of triatomic molecules. II. Difluorides of manganese, iron, cobalt, and nickel. Zh Strukt Khim 27:36–41/704–709 (Engl Transl)

    Google Scholar 

  • Girichev GV, Utkin AN, Revichev YF (1984) Upgrading the EMR-100 electron-diffraction camera for use with gases. Prib Thekh Eksp/Instrum Exp Tech (Engl Transl) (2/2):187–190/457–461

    Google Scholar 

  • Girichev GV, Shlykov SA, Revichev YF (1986) Apparatus for study of molecular structure of valence-unsaturated compounds. Prib Thekh Eksp/Instrum Exp Tech (Engl Transl) 4:167–169/939–942

    Google Scholar 

  • Girichev GV, Shlykov SA, Petrova VN, Subbotina NY, Lapshina SB, Danilova TG (1988) Devices and technique of combined electron diffraction and mass-spectroscopic experiment and their application in study of titanium trichalide molecules. Izv Vyssh Uchebn Zaved, Khim Khim Tekhnol 31:46–51 (in Russian)

    CAS  Google Scholar 

  • Gundersen G, Samdal S, Seip HM (1981) Least squares refinement program based on gas electron diffraction data. Internal report, University of Oslo, Oslo, 116 p

    Google Scholar 

  • Gundersen S, Samdal S, Strand TG, Volden HV (2007) Benzene; high level quantum chemical calculations, gas electron diffraction pattern recorded on Fuji imaging plates and a method to explore systematic discrepancies which was used to determine an improved sector correction. J Mol Struct 832:164–171

    Article  CAS  Google Scholar 

  • Hargittai I (1988) A survey: The gas-phase electron diffraction technique of molecular structure determination. In: Hargittai I, Hargittai M (eds) Stereochemical applications of gas-phase electron diffraction. Part A. The electron diffraction technigue. VCH Publishers Inc, New York, pp 1–54

    Google Scholar 

  • Hargittai M, Subbotina NY, Kolonits M, Gershikov AG (1991) Molecular structure of first-row transition metal dihalides from combined electron diffraction and vibrational spectroscopic analysis. J Chem Phys 94:7278–7291

    Article  CAS  Google Scholar 

  • Hinchley SL, Robertson HE, Borisenko KB, Turner AR, Johnston BF, Rankin DWH, Ahmadian M, Jones JN, Cowley AH (2004) The molecular structure of tetra-tert-butyldiphosphine: an extremely distorted, sterically crowded molecule. Dalton Trans 2469–2476

    Google Scholar 

  • Hougen JT, Bunker PR, Johns JWC (1970) The vibration-rotation problem in triatomic molecules allowing for a large-amplitude bending vibration. J Mol Spectrosc 34:136–172

    Article  CAS  Google Scholar 

  • Huber KP, Herzberg G (1979) Constants of diatomic molecules. Molecular spectra and molecular structure. Springer, Boston, MA, pp 8–689

    Chapter  Google Scholar 

  • Ihee H, Lobastov VA, Gomez UM, Goodson BM, Srinivasan R, Ruan C-Y, Zewail AH (2001) Direct imaging of transient molecular structures with ultrafast diffraction. Science 291:458–462

    Article  CAS  PubMed  Google Scholar 

  • Iijima T, Suzuki W, Yano YF (1998) Use of imaging plates in gas-phase electron diffraction. Jpn J Appl Phys 37:5064–5065

    Article  CAS  Google Scholar 

  • Ischenko AA, Golubkov VV, Spiridonov VP, Zgurskii AV, Akhmanov AS, Vabischevich MG (1983) A stroboscopical gas-electron diffraction method for the investigation of short-lived molecular species. Appl Phys B 32:161–163

    Article  Google Scholar 

  • Ischenko AA, Spiridonov VP, Tarasov YI, Stuchebryukhov AA (1988) The cumulant method in diffraction analysis of polyatomic molecules. J Mol Struct 172:255–273

    Article  Google Scholar 

  • Ischenko AA, Weber PM, Miller RJD (2017) Capturing chemistry in action with electrons: realization of atomically resolved reaction dynamics. Chem Rev 117(16):11066–11124

    Article  CAS  PubMed  Google Scholar 

  • Ivanov AA, Spiridonov VP, Demidov AV, Zasorin EZ (1974) A reconstructed EG-100 electron diffraction camera for investigating the structure of nonvolatile compounds. Prib Tekh Eksp/Instrum Exp Tech (Engl Transl) 2:270–272/622–625

    Google Scholar 

  • Iwasaki M, Hedberg K (1962) Centrifugal distortion of bond distances and bond angles. J Chem Phys 36:2961–2963

    Article  CAS  Google Scholar 

  • Karle IL, Karle J (1949) Internal motion and molecular structure studies by electron diffraction. J Chem Phys 17:1052–1057

    Article  CAS  Google Scholar 

  • Karle J, Karle IL (1950a) Internal motion and molecular structure studies by electron diffraction. II. Interpretation and method. J Chem Phys 18:957–962

    Article  CAS  Google Scholar 

  • Karle IL, Karle J (1950b) Internal motion and molecular structure studies by electron diffraction. III. Structure of CH2CF2 and CF2CF2. J Chem Phys 18:963–971

    Article  CAS  Google Scholar 

  • Kochikov IV, Tarasov YI (2003) Equilibrium structure and internal rotation in B2F4 from electron diffraction and spectroscopic data and quantum chemical calculations. Struct Chem 14:227–238

    Article  CAS  Google Scholar 

  • Kochikov IV, Tarasov YI, Spiridonov VP, Kuramshina GM, Yagola AG, Saakjan AS, Popik MV, Samdal S (1999) Extension of a regularizing algorithm for the determination of equilibrium geometry and force field of free molecules from joint use of electron diffraction, molecular spectroscopy and ab initio data on systems with large-amplitude oscillatory motion. J Mol Struct 485–486:421–443

    Article  Google Scholar 

  • Kochikov IV, Tarasov YI, Vogt N, Spiridonov VP (2002) Large-amplitude motion in 1,4-cyclohexadiene and 1,4-dioxin: theoretical background for joint treatment of spectroscopic, electron diffraction and ab initio data. J Mol Struct 607:163–174

    Article  CAS  Google Scholar 

  • Kochikov IV, Kovtun DM, Tarasov YI (2008) Vychislitel’nye metody i programmirovanie 8:44 (in Russian)

    Google Scholar 

  • Kovtun DM, Kochikov IV, Tarasov YI (2015) Electron diffraction analysis for the molecules with multiple large-amplitude motions. 3-Nytrostyrene—a molecule with two internal rotors. J Phys Chem A 119:1657–1665

    Article  CAS  PubMed  Google Scholar 

  • Kuchitsu K (1967a) Effect of molecular vibrations on gas electron diffraction. I. Probability distribution function and molecular intensity for diatomic molecules. Bull Chem Soc Jpn 40:498–504

    Article  CAS  Google Scholar 

  • Kuchitsu K (1967b) Effect of molecular vibrations on gas electron diffraction. II. Probability distribution function and phase parameter for polyatomic molecules. Bull Chem Soc Jpn 40:505–510

    Article  Google Scholar 

  • Kuchitsu K, Bartell LS (1961) Effects of anharmonicity of molecular vibrations on the diffraction of electrons. II. Interpretation of experimental structural parameters. J Chem Phys 35:1945–1949

    Article  CAS  Google Scholar 

  • Kuchitsu K, Nakata M, Yamamoto S (1988) Joint use of electron diffraction and high-resolution spectroscopic data for accurate determination of molecular. In: Hargittai I, Hargittai M (eds) Stereochemical applications of gas-phase electron diffraction. Part A. The electron diffraction experiment. VCH Publishers Inc, New York, pp 227–263

    Google Scholar 

  • López JC, Peña MI, Sanz ME, Alonso JL (2007) Probing thymine with laser ablation molecular beam Fourier transform microwave spectroscopy. J Chem Phys 126:191103/1–4

    Google Scholar 

  • Mark H, Wierl R (1930) The determination of molecular structure by the diffraction of electrons by a stream of vapor (in German). Z Elektrochem 36:675–676

    CAS  Google Scholar 

  • Masters SL (2013) Gas phase structure of small molecules. Comp Inorg Chem II 9:89–109

    CAS  Google Scholar 

  • Morino Y, Hirota E (1955) Mean amplitudes of thermal vibrations in polyatomic molecules. III. The generalized mean amplitudes. J Chem Phys 23:737–747

    Article  CAS  Google Scholar 

  • Morino Y, Iijima T (1963) The distribution function of internal displacement coordinates in linear XY2 molecules. Bull Chem Soc Jpn 36:412–419

    Article  Google Scholar 

  • Morino Y, Nakamura Y, Iijima T (1960) Mean square amplitudes and force constants of tetrahedral molecules. I. Carbon tetrachloride and germanium tetrachloride. J. Chem Phys 32:643–652

    Article  CAS  Google Scholar 

  • Morino Y, Nakamura J, Moore PW (1962) Shrinkage effect by thermal vibrations in linear-skeleton molecules. J Chem Phys 36:1050–1056

    Article  CAS  Google Scholar 

  • Novikov VP, Vilkov LV (2000) Development of dynamic model in gas electron diffraction. Adv Mol Struct Res 6:299–340

    CAS  Google Scholar 

  • Pauling L, Brockway LO (1935) The radial distribution method of interpretation of electron diffraction photographs of gas molecules. J Am Chem Soc 57:2684–2692

    Article  CAS  Google Scholar 

  • Samdal S (1994) The effect of large amplitude motion on the comparison of bond distances from ab initio calculations and experimentally determined bond distances, and on root-mean-square amplitudes of vibration, shrinkage, asymmetry constants, symmetry constraints, and inclusion of rotational constants using the electron diffraction method. J Mol Struct 318:133–141

    Article  CAS  Google Scholar 

  • Sipachev VA (1985) Calculation of shrinkage corrections in harmonic approximation. J Mol Struct (Theochem) 121:143–151

    Article  Google Scholar 

  • Sipachev VA (1999) Vibrational effects in diffraction and microwave experiments: a start on the problem. Adv Mol Struct Res 5:263–311

    Article  CAS  Google Scholar 

  • Sipachev VA (2000) Anharmonic corrections to structural experiment data. Struct Chem 11:167–172

    Article  CAS  Google Scholar 

  • Sipachev VA (2001) Local centrifugal distortions caused by internal motions of molecules. J Mol Struct 567–568:67–72

    Article  Google Scholar 

  • Spiridonov VP (1988) Spectroscopic information from electron diffraction. In: Hargittai I, Hargittai M (eds) Stereochemical applications of gas-phase electron diffraction. Part A. The electron diffraction technique. VCH Publisher Inc, New York, pp 265–299

    Google Scholar 

  • Spiridonov VP, Gershikov AG, Zasorin EZ, Butayev BS (1981a) The determination of harmonic potential functions from diffraction information. In: Hargittai I, Orville-Thomas WJ (eds) Diffraction studies of non-crystalline substances. Akadémiai Kiadó, Budapest, pp 159–195

    Google Scholar 

  • Spiridonov VP, Ischenko AA, Ivashkevich LS (1981b) A new intensity equation for electron diffraction analysis: a barrier to pseudorotation in PF5 from diffraction data. J Mol Struct 72:153–164

    Article  CAS  Google Scholar 

  • Spiridonov VP, Gershikov AG, Lytsarev VS (1990) Electron diffraction analysis of XY2 and XY3 molecules with large amplitude motion. Part I. Dynamical model and molecular scattering function. J Mol Struct 221:57–78

    Article  CAS  Google Scholar 

  • Spiridonov VP, Vogt N, Vogt J (2001) Determination of molecular structure in terms of potential energy functions from gas-phase electron diffraction supplemented by other experimental and computational data. Struct Chem 12:349–376

    Article  CAS  Google Scholar 

  • Srinivasan R, Lobastov VA, Ruan C-Y, Zewail AH (2003) Ultrafast electron diffraction (UED). A new development for the 4D determination of transient molecular structures. Helv Chim Acta 86:1763–1838

    Article  CAS  Google Scholar 

  • Tarasov YI, Kochikov IV, Vogt N, Stepanova AV, Kovtun DM, Ivanov AA, Rykov AN, Deyanov RZ, Novosadov BK, Vogt J (2008) Electron diffraction and quantum chemical study of the structure and internal rotation in nitroethane. J Mol Struct 872:150–165

    Article  CAS  Google Scholar 

  • Thomson GP, Reid A (1927) Diffraction of cathode rays by a tin film. Nature 119:890

    Article  Google Scholar 

  • Tremmel J, Hargittai I (1988) Gas Electron Diffraction Experiment. In: Hargittai I, Hargittai M (eds) Stereochemical applications of gas-phase electron diffraction. Part A. The electron diffraction experiment. VCH Publishers Inc, New York, pp 191–225

    Google Scholar 

  • Tremmel J, Bohatka S, Berecz I, Hargittai I (1978) Attachment of a quadrupole mass spectrometer to the EG-100A electronograph. Prib Thekh Eksp/Instrum Exp Tech (Engl Transl) 4:251–252/1118–1120

    Google Scholar 

  • Vishnevskiy YV (2007) The initial processing of the gas electron diffraction data: an improved method for obtaining intensity curves from diffraction patterns. J Mol Struct 833:30–41

    Article  CAS  Google Scholar 

  • Vishnevskiy YV (2019) UNEX program package. http://unexprog.org

  • Vogt N (2001) Equilibrium bond lengths, force constants and vibrational frequencies of MnF2, CoF2, NiF2, and ZnF2 from least-squares analysis of gas-phase electron diffraction data. J Mol Struct 570:189–195

    Article  CAS  Google Scholar 

  • Vogt N, Vogt J (2019) Structure data of free polyatomic molecules. Springer, Switzerland, p 926

    Book  Google Scholar 

  • Vogt N, Girichev GV, Vogt J, Girichev AG (1995) Equilibrium structure of beryllium difluoride from least-squares analysis of gas-phase electron diffraction data. J Mol Struct 352–353:175–179

    Article  Google Scholar 

  • Vogt J, Vogt N, Kramer R (2003) Visualization and substructure retrieval tools in the MOGADOC database. J Chem Inform Comput Sci 43:357–361

    Article  CAS  Google Scholar 

  • Vogt N, Khaikin LS, Grikina OE, Rykov AN, Vogt J (2008) Study of thymine molecule: equilibrium structure from joint analysis of gas-phase electron diffraction and microwave data and assignment of vibrational spectra using results of ab initio calculations. J Phys Chem A 112:7662–7670

    Article  CAS  PubMed  Google Scholar 

  • Vogt N, Khaikin LS, Grikina OE, Karasev NM, Vogt J, Vilkov LV (2009) Flexibility of the saturated five-membered ring in 2,5-pyrrolidinedione (succinimide): electron diffraction and quantum-chemical studies with use of vibrational spectroscopy data. J Phys Chem A 113:931–937

    Google Scholar 

  • Vogt N, Rudert R, Rykov AN, Karasev NM, Shishkov IF, Vogt J (2011a) Use of imaging plates (IPs) in the gas-phase electron diffraction (GED) experiments on the EG-100M apparatus. The tetrachloromethane molecule as a test object. Struct Chem 22(2):287–291

    Google Scholar 

  • Vogt N, Vogt J, Demaison J (2011b) Accuracy of the rotational constants. J Mol Struct 988:119–127

    Article  CAS  Google Scholar 

  • Vogt N, Khaikin LS, Grikina OE, Rykov AN (2013) A benchmark study of molecular structure by experimental and theoretical methods: equilibrium structure of uracil from gas-phase electron diffraction data and coupled-cluster calculations. J Mol Struct 1050:114–121

    Article  CAS  Google Scholar 

  • Vogt N, Demaison J, Ksenafontov DN, Rudolph HD (2014) A benchmark study of molecular structure by experimental and theoretical methods: equilibrium structure of thymine from microwave rotational constants and coupled-cluster computations. J Mol Struct 1076:483–489

    Article  CAS  Google Scholar 

  • Vogt N, Altova EP, Ksenafontov DN, Rykov AN (2015) Benchmark study of molecules with large-amplitude ring-twisting motion: accurate equilibrium structure of succinic anhydride from gas electron diffraction data and coupled-cluster computations. Struct Chem 26:1481–1488

    Article  CAS  Google Scholar 

  • Vogt N, Marochkin II, Rykov AN (2018) Experiment and theory at the convergence limit: accurate equilibrium structure of picolinic acid by gas-phase electron diffraction and coupled-cluster computations. Phys Chem Chem Phys 20:9787–9795

    Article  CAS  PubMed  Google Scholar 

  • Vogt N, Khaikin LS, Rykov AN, Grikina OE, Batiukov AA, Vogt J, Kochikov IV, Shishkov IF (2019) The equilibrium molecular structure of 2-cyanopyridine from combined analysis of gas-phase electron diffraction and microwave data and results of ab initio calculations. Struct Chem 30:1699–1706

    Article  CAS  Google Scholar 

  • Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. The theory of infrared and raman vibrational spectra. McGrow-Hill, New York, p 388

    Google Scholar 

  • Yagola AG, Kochikov IV, Kuramshina GM, Pentin YA (1999) Inverse problems of vibrational spectroscopy. VSP, Utrecht, The Netherlands, p 297

    Google Scholar 

  • Zhabanov YA, Zakharov AV, Giricheva NI, Shlykov SA, Koifman OI, Girichev GV (2015) To the limit of gas-phase electron diffraction: Molecular structure of magnesium octa(m-trifluoromethylphenyl)porphyrazine. J Mol Struct 1092:104–112

    Article  CAS  Google Scholar 

  • Zhakharov AV, Dakkouri M, Krasnov AV, Girichev GV, Zaitzeva IG (2004) The molecular structure of Mg(acac) determined by gas-phase electron diffraction and quantum mechanical calculations. J Mol Struct 701:1–8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Demaison .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demaison, J., Vogt, N. (2020). Molecular Structures from Gas-Phase Electron Diffraction. In: Accurate Structure Determination of Free Molecules. Lecture Notes in Chemistry, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-030-60492-9_7

Download citation

Publish with us

Policies and ethics