Skip to main content

Formation Control of UAVs and Mobile Robots Using Self-organized Communication Topologies

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2020)

Abstract

Formation control in a robot swarm targets the overall swarm shape and relative positions of individual robots during navigation. Existing approaches often use a global reference or have limited topology flexibility. We propose a novel approach without these constraints, by extending the concept of ‘mergeable nervous systems’ to establish distributed asymmetric control via a self-organized wireless communication network. In simulated experiments with UAVs and mobile robots, we present a proof-of-concept for three sub-tasks of formation control: formation establishment, maintenance during motion, and deformation. We also assess the fault tolerance and scalability of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://iridia.ulb.ac.be/supp/IridiaSupp2020-006/index.html.

References

  1. Anderson, B.D., Fidan, B., Yu, C., Walle, D.: UAV formation control: theory and application. In: Blondel, V.D., Boyd, S.P., Kimura, H. (eds.) Recent Advances in Learning and Control. Lecture Notes in Control and Information Sciences, vol. 371, pp. 15–33. Springer, London (2008). https://doi.org/10.1007/978-1-84800-155-8_2

    Chapter  MATH  Google Scholar 

  2. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  3. Cao, Z., Xie, L., Zhang, B., Wang, S., Tan, M.: Formation constrained multi-robot system in unknown environments. In: IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), vol. 1, pp. 735–740. IEEE (2003)

    Google Scholar 

  4. Chen, Y.Q., Wang, Z.: Formation control: a review and a new consideration. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3181–3186. IEEE (2005)

    Google Scholar 

  5. Cox, D., Jovanov, E., Milenkovic, A.: Time synchronization for ZigBee networks. In: Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, SSST 2005, pp. 135–138. IEEE (2005)

    Google Scholar 

  6. Dong, X., Hua, Y., Zhou, Y., Ren, Z., Zhong, Y.: Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems. IEEE Trans. Autom. Sci. Eng. 16(1), 229–240 (2018)

    Article  Google Scholar 

  7. Ferrante, E., Turgut, A.E., Huepe, C., Stranieri, A., Pinciroli, C., Dorigo, M.: Self-organized flocking with a mobile robot swarm: a novel motion control method. Adapt. Behav. 20(6), 460–477 (2012)

    Article  Google Scholar 

  8. Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Magdalena, L.: Open e-puck range & bearing miniaturized board for local communication in swarm robotics. In: IEEE International Conference on Robotics and Automation, pp. 3111–3116. IEEE (2009)

    Google Scholar 

  9. Lewis, M.A., Tan, K.H.: High precision formation control of mobile robots using virtual structures. Autonom. Robots 4(4), 387–403 (1997). https://doi.org/10.1023/A:1008814708459

    Article  Google Scholar 

  10. Liu, L., Kuo, S.M., Zhou, M.: Virtual sensing techniques and their applications. In: International Conference on Networking, Sensing and Control, pp. 31–36. IEEE (2009)

    Google Scholar 

  11. Liu, Y., Bucknall, R.: A survey of formation control and motion planning of multiple unmanned vehicles. Robotica 36(7), 1019–1047 (2018)

    Article  Google Scholar 

  12. Mathews, N., Christensen, A.L., O’Grady, R., Mondada, F., Dorigo, M.: Mergeable nervous systems for robots. Nature Commun. 8, 439 (2017)

    Article  Google Scholar 

  13. Millard, A.G., et al.: The Pi-puck extension board: a Raspberry Pi interface for the e-puck robot platform. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 741–748. IEEE (2017)

    Google Scholar 

  14. Mondada, F., Bonani, et al.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, vol. 1, pp. 59–65. IPCB: Instituto Politécnico de Castelo Branco (2009)

    Google Scholar 

  15. Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 3400–3407. IEEE, May 2011

    Google Scholar 

  16. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012). https://doi.org/10.1007/s11721-012-0072-5

    Article  Google Scholar 

  17. Ren, W., Sorensen, N.: Distributed coordination architecture for multi-robot formation control. Robot. Auton. Syst. 56(4), 324–333 (2008)

    Article  Google Scholar 

  18. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014)

    Article  Google Scholar 

  19. Soorati, M.D., Heinrich, M.K., Ghofrani, J., Zahadat, P., Hamann, H.: Photomorphogenesis for robot self-assembly: adaptivity, collective decision-making, and self-repair. Bioinspir. Biomim. 14(5), 056006 (2019)

    Article  Google Scholar 

  20. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms: formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017)

    Article  Google Scholar 

  21. Wang, P.K.: Navigation strategies for multiple autonomous mobile robots moving in formation. J. Robot. Syst. 8(2), 177–195 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Program of Concerted Research Actions (ARC) of the Université libre de Bruxelles, by the Office of Naval Research Global (Award N62909-19-1-2024), by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 846009, and by the China Scholarship Council Award No 201706270186. Marco Dorigo and Mary Katherine Heinrich acknowledge support from the Belgian F.R.S.-FNRS, of which they are a Research Director and a Postdoctoral Researcher respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixu Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, W., Allwright, M., Heinrich, M.K., Oğuz, S., Christensen, A.L., Dorigo, M. (2020). Formation Control of UAVs and Mobile Robots Using Self-organized Communication Topologies. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2020. Lecture Notes in Computer Science(), vol 12421. Springer, Cham. https://doi.org/10.1007/978-3-030-60376-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60376-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60375-5

  • Online ISBN: 978-3-030-60376-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics