Skip to main content

Rock Avalanches: Basic Characteristics and Classification Criteria

  • Chapter
  • First Online:
Understanding and Reducing Landslide Disaster Risk (WLF 2020)

Part of the book series: ICL Contribution to Landslide Disaster Risk Reduction ((CLDRR))

Included in the following conference series:

Abstract

Rock avalanches represent the specific type of flow-like landslides—dry granular flows—that pose major threat to population in mountainous regions and in the adjacent plains. Being extremely mobile, they can affect areas up to dozens of square kilometers, extending sometimes for more than 10 km from the feet of the collapsing slopes. The internal structure of their deposits is characterized by intensive fragmentation of inner parts overlain by much coarser carapace. Such internal structure is typical of the vast majority of large-scale rock slope failures, both long runout and forming compact blockages in narrow river valleys. Therefore, all of them should be classified as rock avalanches, rather than as rock slides. Three additional classification criteria closely related to rock avalanche mobility and allowing more strict definition of a particular rock avalanche are discussed, i.e. the confinement conditions, debris distribution along the rock avalanche path, and directivity of debris motion. Besides providing information on debris motion mechanism(s), these characteristics predetermine the assessment of the exposure of elements at risk that might be affected by rock avalanche. It is demonstrated that transformation from the block slide to granular flow depends somehow on the morphology of the transition-deposition zone and on the mechanical properties of the basal surface, but is independent from the type and mechanical properties of the host rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdrakhmatov K, Strom A (2006) Dissected rockslide and rock avalanche deposits; Tien Shan Kyrgyzstan. In: Evans SG, Scarascia Mugnozza G, Strom A, Hermanns RL (eds) Landslides from massive rock slope failure. NATO science series: IV: earth and environmental sciences, vol 49. Springer, New York, pp 551–572

    Google Scholar 

  • Adushkin VV, Pernik LM, Popel’ SI, Strom AL, Shishaeva AS (2006) Formation of nano- and micro-range particles in rocky slopes collapse. Nano- and micro-scale particles in geophysical processes. Institute of Geospheres Dynamics, RAS, Moscow (in Russian)

    Google Scholar 

  • Capra L (2011) Volcanic natural dams associated with sector collapses: textural and sedimentological constraints on their stability. In: Evans SG, Hermanns R, Strom AL, Scarascia Mugnozza G (eds) Natural and artificial rockslide dams. Lecture notes in earth sciences, vol 133. Springer, Heidelberg, pp 279–294

    Google Scholar 

  • Cassie JW, Van Gassen W, Cruden DM (1988) Laboratory analogue of the formation of molards, cones on rock-avalanche debris. Geology 16:735–738

    Article  Google Scholar 

  • Chigira M, Kiho K (1994) Deep-seated rockslide-avalanches preceded by mass rock creep of sedimentary rocks in the Akaishi Mountains, central Japan. Eng Geol 38:221–230

    Article  Google Scholar 

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33:260–271

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, U.S. Transportation Research Board, Special Report, No. 247, pp 36–75

    Google Scholar 

  • Davies TR (1982) Spreading of rock avalanche debris by mechanical fluidization. Rock Mech 15:9–24

    Article  Google Scholar 

  • Davies TR, McSaveney MJ (2011) Rock-avalanche size and runout—implications for landslide dams. In: Evans SG, Hermanns R, Strom AL, Scarascia Mugnozza G (eds) Natural and artificial rockslide dams. Lecture notes in earth sciences, vol 133. Springer, Heidelberg, pp 441–462

    Google Scholar 

  • Davies TRH, Reznichenko NV, McSaveney MJ (2020) Energy budget for a rock avalanche: fate of fracture surface energy. Landslides 17:3–13

    Article  Google Scholar 

  • Dubovskoi AN, Pernik LM, Strom AL (2008) Experimental simulation of rockslide fragmentation. J Min Sci 44(2):123–130

    Article  Google Scholar 

  • Dufresne A, Ostermann M, Preusser F (2018) River-damming, Late-Quaternary rockslides and rock avalanches in the Ötz Valley region (Tyrol, Austria). Geomorphology 310:153–167

    Article  Google Scholar 

  • Erismann TH (1979) Mechanisms of large landslides. Rock Mech 12:15–46

    Google Scholar 

  • Evans SG, Hungr O, Enegren EG (1994) The Avalanche Lake rock avalanche, Mackenzie Mountains, Northwest Territories, Canada: description, dating and dynamics. Can Geotech J 31:749–768

    Article  Google Scholar 

  • Hartvich F, Mugnai F, Proietti C, Smolkova V, Strom A (2008) A reconstruction of a former rockslide-dammed lake: the case of the Kokomeren River valley (Tien Shan, Kyrgyzstan). Poster presentation at the EGU conference, Vien

    Google Scholar 

  • Heim A (1882) Der Bergsturz von Elm. Deutsch. Geol. Gesell. Zeitschr. 34:74–115

    Google Scholar 

  • Hewitt K (2002) Styles of rock avalanche depositional complex in very rugged terrain, Karakoram Himalaya, Pakistan. In: Evans SG (ed) Catastrophic landslides: effects, occurrence and mechanisms. Rev Eng Geol 15:345–378

    Google Scholar 

  • Hewitt K (2006) Rock avalanches with complex run out and emplacement, Karakoram Himalaya, Inner Asia. In: Evans SG, Scarascia Mugnozza G, Strom A, Hermanns RL (eds) Landslides from massive rock slope failure. NATO science series: IV: earth and environmental sciences, vol 49. Springer, pp 521–550

    Google Scholar 

  • Hsü KJ (1975) Catastrophic debris streams (Sturzstroms) generated by rock falls. Geol Soc Am Bull 86:129–140

    Article  Google Scholar 

  • Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7(3):221–238

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) Varnes classification of landslide types, an update. Landslides 11:167–194

    Article  Google Scholar 

  • Hutchinson JN (1968) Mass movement. In: Fairbridge RW (ed) Encyclopedia of geomorphology. Reinhold Publishers, New York, pp 688–695

    Chapter  Google Scholar 

  • Hutchinson JN (1988) General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In: Proceedings of 5th international symposium on landslides, Lausanne, vol 1, pp 3–35

    Google Scholar 

  • Jibson RW, Harp EL, Schulz W, Keefer DK (2006) Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002. Eng Geol 83:144–160

    Article  Google Scholar 

  • Kilburn CRJ, Sørensen S-A (1998) Runout length of sturzstroms: the control of initial conditions and of fragment dynamics. J Geophys Res 103B:17877–17884

    Article  Google Scholar 

  • Kobayashi Y (1993) A hypothesis for reduced resistance in large landslides. In: Safety and environmental issues in rock engineering. Proceedings of the ISRM international symposium Lisboa, 21–24 June 1993. I. Balkema Rotterdam, pp 335–339

    Google Scholar 

  • Kobayashi Y (1997) Long runout landslides riding on basal guided wave. In: Marinos K, Tsiambaos S (eds) Engineering geology and the environment. Balkema, Rotterdam, pp 761–766

    Google Scholar 

  • Kolesnikov VS (1929) Brief description of the trip to the Sarez Lake in 1925. In: Proceedings of the Central Asian geographical society, vol XIX, Tashkent (in Russian)

    Google Scholar 

  • Korchevskiy VF, Kolichko AV, Strom AL, Pernik LM, Abdrakhmatov KE (2011) Utilisation of data derived from largescale experiments and study of natural blockages for blast-fill dam design. In: Evans SG, Hermanns R, Strom AL, Scarascia Mugnozza G (eds) Natural and Artificial Rockslide Dams. Lecture notes in earth sciences, vol 133. Springer, Heidelberg, pp 617–637

    Google Scholar 

  • Kurdiukov KV (1950) Ancient rockfalls in the Alay Range valleys. Prob Geogr 21:191–204 (in Russian)

    Google Scholar 

  • Kurdiukov KV (1964) Newest tectonic movements and traces of the extreme seismic shocks on the northern slope of the Zaalai Range. In: Activated zone of Earth crust, newest tectonic movements and seismicity. Moscow, pp 153–159 (in Russian)

    Google Scholar 

  • Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331

    Google Scholar 

  • Legros F (2006) Landslide mobility and the role of water. In: Evans SG, Scarascia Mugnozza G, Strom A, Hermanns RL (eds) Landslides from massive rock slope failure. NATO science series: IV: earth and environmental sciences, vol 49. Springer, New York, pp 233–242

    Google Scholar 

  • Li T (1983) A mathematical model for predicting the extent of a major rockfall. Z Geomorphol 27:473–482

    Google Scholar 

  • McSaveney MJ (1978) Sherman glacier rock avalanche. In: Voight B (ed) Rockslides and avalanches 1, natural phenomena. Elsevier, Amsterdam, pp 197–258

    Chapter  Google Scholar 

  • McSaveney MJ, Davies TRH (2006) Rapid rock-mass flow with dynamic fragmentation: inferences from the morphology and internal structure of rockslides and rock avalanches. In: Evans SG, Scarascia Mugnozza G, Strom A, Hermanns RL (eds) Landslides from massive rock slope failure. NATO science series: IV: earth and environmental sciences, vol 49. Springer, Heidelberg, pp 285–304

    Google Scholar 

  • Nicoletti PG, Sorriso-Valvo M (1991) Geomorphic controls of the shape and mobility of rock avalanches. Geol Soc Am Bull 103:1365–1373

    Article  Google Scholar 

  • Nichol S, Hungr O, Evans SG (2002) Large-scale brittle and ductile toppling of rock slopes. Can Geotech J 39:773–780

    Google Scholar 

  • Pollet N, Cojean R, Couture R, Schneider J-L, Strom AL, Voirin C, Wassmer P (2005) A slab-on-slab model for the Flims rockslide (Swiss Alps). Can Geotech J 42:587–600

    Article  Google Scholar 

  • Preobrajensky IA (1920) The Usoi landslide. Geol Comm Papers Appl Geol 14:21 p. (in Russian)

    Google Scholar 

  • Qin SQ, Jiao JJ, Li ZG (2006) Nonlinear evolutionary mechanisms of instability of plane-shear slope: catastrophe, bifurcation, chaos and physical prediction. Rock Mech Rock Eng 39(1):59–76

    Article  Google Scholar 

  • Reznichenko N, Davies T (2015) The gigantic Komansu rock avalanche deposit in the glaciated Alai Valley, Northern Pamir of Central Asia. In: Lollino G et al (eds) Engineering geology for society and territory, vol 2. Springer International Publishing, Switzerland, pp 895–898

    Google Scholar 

  • Reznichenko NV, Davies TRH, Shulmeister J, Larsen SH (2012) A new technique for identifying rock-avalanche-sourced sediment in moraines and some palaeoclimatic implications. Geology 40(4):319–322

    Article  Google Scholar 

  • Reznichenko NV, Andrews GR, Geater RE, Strom A (2017) Origin of large hummock deposits “chukuryi” in Alai Valley, Northern Pamir: geomorphological and sedimentological investigation. Geomorphology 285:347–362

    Article  Google Scholar 

  • Robinson TR, Davies TRH, Reznichenko N, De Pascale GP (2015) The extremely long runout Komansu rock avalanche in the Trans Alay range, Pamir Mountains. Southern Kyrgyzstan. Landslides 12:523–535

    Article  Google Scholar 

  • Sassa K, Nagai O, Solidum R, Yamazaki Y, Ohta H (2010) An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide. Landslides 7:219–236

    Article  Google Scholar 

  • Schuster RL, Crandell DR (1984) Catastrophic debris avalanches from volcanoes. In: IV international symposium on landslides proceedings, Toronto, vol 1, pp 567–572

    Google Scholar 

  • Shaller PJ (1991) Analysis and implications of large Martian and terrestrial landslides, Ph.D. thesis. California Institute of Technology, Pasadena, CA, USA

    Google Scholar 

  • Sheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 5:231–236

    Article  Google Scholar 

  • Shoaei Z, Ghayoumian J (2000) Seimareh landslide, Western Iran, one of the World’s largest complex landslides. Landslide News 13:23–27

    Google Scholar 

  • Strom AL (1994) Mechanism of stratification and abnormal crushing of rockslide deposits. In: Proceedings 7th international IAEG congress 3. Balkema, Rotterdam, pp 1287–1295

    Google Scholar 

  • Strom AL (1996) Some morphological types of long-runout rockslides: effect of the relief on their mechanism and on the rockslide deposits distribution. In: Senneset K (ed) Landslides. Proceedings of the seventh international symposium on landslides, Balkema, Trondheim, Norway, Rotterdam, pp 1977–1982

    Google Scholar 

  • Strom AL (1998) Giant ancient rockslides and rock avalanches in the Tien Shan Mountains, Kyrgyzstan. Landslide News 11:20–23

    Google Scholar 

  • Strom AL (2004) Rock avalanches of the Ardon River valley at the southern foot of the Rocky Range, Northern Caucasus, North Osetia. Landslides 1:237–241

    Article  Google Scholar 

  • Strom AL (2006) Morphology and internal structure of rockslides and rock avalanches: grounds and constraints for their modelling. In: Evans SG, Scarascia Mugnozza G, Strom A, Hermanns RL (eds) Landslides from massive rock slope failure. NATO science series: IV: earth and environmental sciences, vol 49, pp 305–328

    Google Scholar 

  • Strom AL (2010) Evidence of momentum transfer during large-scale rockslides’ motion. In: Williams AL, Pinches GM, Chin CY, McMorran TG, Massei CI (eds) Geologically active. Proceedings of the 11th IAEG congress, Auckland, New Zealand, 5–10 September 2010. Tailor & Francis Group, London, pp 73–86

    Google Scholar 

  • Strom A (2014) Catastrophic Slope Processes in Glaciated Zones of Mountainous Regions. In: Shan W et al (eds) Landslides in cold regions in the context of climate change, environmental science and engineering. Springer International Publishing, Switzerland, pp 3–10

    Chapter  Google Scholar 

  • Strom A, Pernik L (2013) Modeling of debris crushing during rock avalanche motion. Geophys Res Abst 15, EGU 2013 - 1373

    Google Scholar 

  • Strom A, Abdrakhmatov K (2018) Rockslides and rock avalanches of Central Asia: distribution, morphology, and internal structure. Elsevier, Netherlands, 449p. ISBN 978-0-12-803204-6

    Google Scholar 

  • Strom A, Li L, Lan H (2019) Rock avalanche mobility: optimal characterization and the effects of confinement. Landslides 16:1437–1452

    Article  Google Scholar 

  • Varnes DJ (1954) Landslide types and processes. In: Eckel EB (ed) Landslides and engineering practice, Special Report 176. Transportation Research board, National Academy of Sciences, Washington, DC, pp 11–33

    Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (ed) Landslidesanalysis and control. National Academy of Sciences Transportation Research Board Special Report 176, pp 12–33

    Google Scholar 

  • von Poschinger A, Wassmer P, Maisch M (2006) The flims rockslide: history of interpretation and new insights. In: Evans SG, Scarascia Mugnozza G, Strom A, Hermanns RL (eds) Landslides from massive rock slope failure. NATO science series: IV: earth and environmental sciences, vol 49. Springer, Heidelberg, pp 329–356

    Google Scholar 

  • Weidinger JT, Korup O, Munack H, Altenberger U, Dunning S, Tippelt G et al (2014) Giant rockslide from the inside. Earth Planet Sci Lett 389:62–73

    Article  Google Scholar 

  • Yuan Z, Chen J, Owen LA, Hedrick KA, Caffee MW, Li W, et al (2013) Nature and timing of large landslides within an active orogen, eastern Pamir, China. Geomorphology 182:49–65

    Google Scholar 

Download references

Acknowledgements

I want to thank Prof. Hengxing Lan who persuaded me to present more detailed classification of rock avalanches. I’ also grateful to Drs. Maurice McSaveney and Salvatore Martino for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Strom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strom, A. (2021). Rock Avalanches: Basic Characteristics and Classification Criteria. In: Vilímek, V., Wang, F., Strom, A., Sassa, K., Bobrowsky, P.T., Takara, K. (eds) Understanding and Reducing Landslide Disaster Risk. WLF 2020. ICL Contribution to Landslide Disaster Risk Reduction. Springer, Cham. https://doi.org/10.1007/978-3-030-60319-9_1

Download citation

Publish with us

Policies and ethics