Skip to main content

Thermo-mechanics of Polymers at Extreme and Failure Conditions: Influence of Strain Rate and Temperature

  • Reference work entry
  • First Online:
Handbook of Damage Mechanics

Abstract

Polymeric materials are increasingly receiving scientific and industrial interest due to the new advances in 3D printing techniques and the possibility to introduce smart responses under external stimuli. Among the industrial sectors, we find interesting applications for biomedical devices, aeronautical components, or smart structures for soft robotics. Regarding the mechanical behavior of these materials, this is rather complex combining nonlinear large deformations, strain rate and temperature dependences, and viscoelastic and viscoplastic responses. When these materials are manufactured by 3D printing techniques or when they include stimuli-responsive particles embedded, their mechanical response becomes even more complex presenting anisotropy and physically coupled effects. All these dependences together make the modelling of their mechanical deformation and failure extremely difficult. This chapter aims at providing the background on the main mechanical features of thermoplastic polymers and the current state of the art in their constitutive modelling. To this end, we first introduce an overview of the deformation mechanisms of thermoplastic polymers and their principal mechanical dependences. Then, the main failure mechanisms presented by these polymers are discussed along with material dependences on brittle-to-ductile transitions. Finally, an extensive review of the state of the art in the modelling of thermoplastic polymers is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • S. Ahn, M. Montero, D. Odell, S. Roundy, P.K. Wright, Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 8(4), 248–257 (2002)

    Article  Google Scholar 

  • S.-H. Ahn, C. Baek, S. Lee, I. Ahn, Anisotropic tensile failure model of rapid prototyping parts – fused deposition modeling (fdm). IJMPB 17, 1510–1516 (2003)

    Google Scholar 

  • G. Alaimo, S. Marconi, L. Costato, F. Auricchio, Influence of meso-structure and chemical composition on fdm 3d-printed parts. Compos. Part B-Eng. 113, 371–380 (2017)

    Article  Google Scholar 

  • N. Aliheidari, R. Tripuraneni, A. Ameli, S. Nadimpalli, Fracture resistance measurement of fused deposition modeling 3D printed polymers. Polym. Test. 60, 94–101 (2017)

    Article  Google Scholar 

  • J. Aranda-Ruiz, K. Ravi-Chandar, J.A. Loya, On the double transition in the failure mode of polycarbonate. Mech. Mater. 140, 103242 (2020)

    Article  Google Scholar 

  • A.S. Argon, The Physics of Deformation and Fracture of Polymers (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  • E.M. Arruda, M.C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)

    Article  MATH  Google Scholar 

  • D. Barba, A. Arias, D. Garcia-Gonzalez, Temperature and strain rate dependences on hardening and softening behaviours in semi-crystalline polymers: application to PEEK. Int. J. Solids Struct. 182–183, 205–217 (2020)

    Article  Google Scholar 

  • M.J. Borden, T.J.R. Hughes, C.M. Landis, C.V. Verhoosel, A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput. Methods Appl. Mech. Eng. 273, 100–118 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • W.D. Callister, Materials Science and Engineering: An Introduction (Wiley, New York, 2006)

    Google Scholar 

  • B. Chang, X. Wang, Z. Long, Z. Li, J. Gu, S. Ruan, C. Shen, Constitutive modeling for the accurate characterization of the tension behavior of PEEK under small strain. Polym. Testing 69, 514–521 (2018)

    Article  Google Scholar 

  • S. Ding, B. Zou, P. Wang, H. Ding, Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM. Polym. Test. 78, 105948 (2019)

    Article  Google Scholar 

  • J. Fan, C. Wang, Dynamic compressive response of a developed polymer composite at different strain rates. Compos. Part B 152, 96–101 (2018)

    Article  Google Scholar 

  • A. Foyouzat, H. Bayesteh, S. Mohammadi, A brittle to ductile phase transition fracture analysis of shape memory polymers. Eng. Fract. Mech., 224, 106751 (2020)

    Google Scholar 

  • D. Garcia-Gonzalez, Magneto-visco-hyperelasticity for hard-magnetic soft materials: theory and numerical applications. Smart Mater. Struct. 28, 085020 (2019)

    Article  Google Scholar 

  • D. Garcia-Gonzalez, C.M. Landis, Magneto-diffusion-viscohyperelasticity for magneto-active hydrogels: rate dependences across time scales. J. Mech. Phys. Solids 139, 103934 (2020)

    Article  MathSciNet  Google Scholar 

  • D. Garcia-Gonzalez, A. Rusinek, T. Jankowiak, A. Arias, Mechanical impact behavior of polyether-ether-ketone (PEEK). Compos. Struct. 124, 88–99 (2015a)

    Article  Google Scholar 

  • D. Garcia-Gonzalez, M. Rodriguez-Millan, A. Rusinek, A. Arias, Low temperature effect on impact energy absorption capability of PEEK composites. Compos. Struct. 134, 440–449 (2015b)

    Article  Google Scholar 

  • D. Garcia-Gonzalez, J. Jayamohan, S.N. Sotiropoulos, S.H. Yoon, J. Cook, C.R. Siviour, A. Arias, A. Jérusalem, On the mechanical behaviour of PEEK and HA cranial implants under impact loading. J. Mech. Behav. Biomed. Mater. 69, 342–354 (2017a)

    Article  Google Scholar 

  • D. Garcia-Gonzalez, R. Zaera, A. Arias, A hyperelastic-thermoviscoplastic constitutive model for semi-crystalline polymers: application to PEEK under dynamic loading conditions. Int. J. Plast. 88, 27–52 (2017b)

    Article  Google Scholar 

  • D. Garcia-Gonzalez, S. Garzon-Hernandez, A. Arias, A new constitutive model for polymeric matrices: application to biomedical materials. Compos. Part B 139, 117–129 (2018)

    Article  Google Scholar 

  • D. Garcia-Gonzalez, A. Rusinek, A. Bendarma, R. Bernier, M. Klosak, S. Bahi, Material and structural behaviour of PMMA from low temperatures to over the glass transition: Quasi-static and dynamic loading. Polym. Test. 81, 106263 (2020a)

    Article  Google Scholar 

  • D. Garcia-Gonzalez, S. Garzon-Hernandez, A. Rusinek, R. Bernier, A. Arias, Low temperature mechanical behaviour of PVDF: cryogenic pre-treatment, quasi-static, cyclic and dynamic experimental testing and modelling. Mech. Mater. 147, 103436 (2020b)

    Article  Google Scholar 

  • S. Garzon-Hernandez, A. Arias, D. Garcia-Gonzalez. A continuum constitutive model for FDM 3D printed thermoplastics. Composites Part B: Engineering, 108373 (2020). https://doi.org/10.1016/j.compositesb.2020.108373

  • S. Garzon-Hernandez, D. Garcia-Gonzalez, A. Jerusalem, A. Arias, Design of FDM 3D printed polymers: an experimental-modelling methodology for mechanical properties prediction. Mater. Des. 188, 108414 (2020)

    Article  Google Scholar 

  • B. Gearing, L. Anand, On modeling the deformation and fracture response of glassy polymers due to shear-yielding and crazing. Int. J. Solids Struct. 41, 3125–3150 (2004)

    Article  MATH  Google Scholar 

  • R. Ghandriz, K. Hart, J. Li, Extended finite element method (XFEM) modeling of fracture in additively manufactured polymers. Addit. Manuf. (2019). https://doi.org/10.1016/j.addma.2019.100945

  • R.N. Haward, G. Thackray, The use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics. Proc. R. Soc. Lond. Ser. A, Math.Phys. Sci. 302, 453–472 (1968)

    Google Scholar 

  • S. Jabbari-Farouji, J. Rottler, O. Lame, A. Makke, M. Perez, J.L. Barrat, Plastic deformation mechanisms of semicrystalline and amorphous polymers. ACS Macro Lett 4(2), 147–150 (2015)

    Article  Google Scholar 

  • H. Jiang, J. Zhang, Z. Yang, C. Jiang, G. Kang, Modeling of competition between shear yielding and crazing in amorphous polymers’ scratch. Int. J. Solids Struct. 124, 215–228 (2017)

    Article  Google Scholar 

  • Y. Kim, H. Yuk, R. Zhao, S.A. Chester, X. Zhao, Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018)

    Article  Google Scholar 

  • D. Kong, J. Li, A. Guo, X. Zhang, X. Xiao, Self-healing high temperature shape memory polymer. Eur. Polym. J. 120, 109279 (2019)

    Article  Google Scholar 

  • L. Laiarinandrasana, M. Lafarge, G. Hochstetter, Accounting for porosity, time and temperature dependency in fracture mechanics concepts on polyvinylidene fluoride material. Eng. Fract. Mech. 76(18), 2766–2779 (2009)

    Article  Google Scholar 

  • H. Louche, F. Piette-Coudol, R. Arrieux, J. Issartel, An experimental and modeling study of the thermomechanical behavior of an ABS polymer structural component during an impact test. Int. J. Impact Eng. 36, 847–861 (2009)

    Article  Google Scholar 

  • S. Lovald, S.M. Kurtz, Applications of Polyetheretherketone in Trauma, Arthroscopy, and Cranial Defect Repair (Elsevier, Amsterdam, 2012)

    Book  Google Scholar 

  • C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83, 1273–1311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • C. Miehe, L.M. Schanzel, H. Ulmer, Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput. Methods Appl. Mech. Eng. 294, 449–485 (2015a)

    Article  MathSciNet  MATH  Google Scholar 

  • C. Miehe, M. Hofacker, L.M. Schanzel, F. Aldakheel, Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic–plastic solids. Comput. Methods Appl. Mech. Eng. 294, 486–522 (2015b)

    Article  MathSciNet  MATH  Google Scholar 

  • I. Mohagheghian, G.J. McShane, W.J. Stronge, Impact perforation of monolithic polyethylene plates: projectile nose shape dependence. Int. J. Impact Eng. 80, 162–176 (2015)

    Article  Google Scholar 

  • M. Nasraoui, P. Forquin, L. Siad, A. Rusinek, Influence of strain rate, temperature and adiabatic heating on the mechanical behaviour of poly-methylmethacrylate: experimental and modelling analyses. Mater. Des. 37, 500–509 (2012)

    Article  Google Scholar 

  • T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B Eng. 143, 172–196 (2018)

    Article  Google Scholar 

  • A. Ohara, H. Kodama, Correlation between enthalpy relaxation and mechanical response on physical aging of polycarbonate in relation to the effect of molecular weight on ductile-brittle transition. Polymer 181, 121720 (2019)

    Article  Google Scholar 

  • A. Pawlak, A. Galeski, A. Rozanski, Cavitation during deformation of semicrystalline polymers. Prog. Polym. Sci. 39(5), 921–958 (2014)

    Article  Google Scholar 

  • C.F. Popelar, C.H. Popelar, V.H. Kenner, Viscoelastic material characterization and modelling of polyethylene. Polym. Eng. Sci. 30, 577–586 (2004)

    Article  Google Scholar 

  • P.J. Rae, E.N. Brown, E.B. Orler, The mechanical properties of poly(ether-ether-ketone) (PEEK) with emphasis on the large compressive strain response. Polymer 48(2), 598–615 (2007)

    Article  Google Scholar 

  • J.F. Rodríguez, J.P. Thomas, J.E. Renaud, Mechanical behavior of acrylonitrile butadiene styrene (abs) fused deposition materials. Experimental investigation. Rapid Prototyp. J. 7(3), 148–158 (2001)

    Article  Google Scholar 

  • S. Saloustros, M. Cervera, L. Pela, Challenges, tools and applications of tracking algorithms in the numerical modelling of cracks in concrete and masonry structures. Arch. Comput. Method E. 26, 961–1005 (2018)

    Article  MathSciNet  Google Scholar 

  • Y. Song, Y. Li, W. Song, K. Yee, K.-Y. Lee, V. Tagarielli, Measurements of the mechanical response of unidirectional 3d-printed pla. Mater. Design. 123, 154–164 (2017)

    Article  Google Scholar 

  • H.G.H. van Melick, L.E. Govaert, H.E.H. Meijer, Prediction of brittle-to-ductile transitions in polystyrene. Polymer 44, 457–465 (2003)

    Article  Google Scholar 

  • G.Z. Voyiadjis, A. Samadi-Dooki, L. Malekmotiei, Nanoindentation of high performance semicrystalline polymers: a case study on PEEK. Polym. Testing 61, 57–64 (2017)

    Article  Google Scholar 

  • X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: a review and prospective. Compos. Part B 110, 442–458 (2017)

    Article  Google Scholar 

  • C. Yang, X. Tian, D. Li, Y. Cao, F. Zhao, C. Shi, Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J. Mater. Process. Technol. 248, 1–7 (2017)

    Article  Google Scholar 

  • F. Zaïri, M. Naït-Abdelaziz, J.M. Gloaguen, J.M. Lefebvre, Modelling of the elasto-viscoplastic damage behaviour of glassy polymers. Int. J. Plast. 24, 945–965 (2008)

    Article  MATH  Google Scholar 

  • W. Zhang, A.S. Wu, J. Sun, Z. Quan, B. Gu, B. Sun, C. Cotton, D. Heider, T.-W. Chou, Characterization of residual stress and deformation in additively manufactured ABS polymer and composite specimens. Compos. Sci. Technol. 150, 102–110 (2017)

    Article  Google Scholar 

  • C. Ziemian, M. Sharma, S. Ziemian, Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling, in Mechanical Engineering, ed. by M. Gokcek, (IntechOpen, London, 2012) 2002

    Google Scholar 

  • R. Zou, Y. Xia, S. Liu, P. Hu, W. Hou, Q. Hu, C. Shan, Isotropic and anisotropic elasticity and yielding of 3d printed material. Compos. Part B-Eng. 99, 506–513 (2016)

    Article  Google Scholar 

  • G. Zurlo, M. Destrade, T. Lu, Fine tuning the electro-mechanical response of dielectric elastomers. Appl. Phys. Lett. 113, 162902 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from Programa de Apoyo a la Realización de Proyectos Interdisciplinares de I+D para Jóvenes Investigadores de la Universidad Carlos III de Madrid and Comunidad de Madrid (project: BIOMASKIN_CM-UC3M), and from Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación y Fondo Europeo de Desarrollo Regional (RTI2018-094318-B-I00). D. Garcia-Gonzalez acknowledges support from the Talent Attraction grant (CM 2018 - 2018-T2/IND-9992) from the Comunidad de Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Garcia-Gonzalez .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Garcia-Gonzalez, D., Garzon-Hernandez, S., Barba, D., Arias, A. (2022). Thermo-mechanics of Polymers at Extreme and Failure Conditions: Influence of Strain Rate and Temperature. In: Voyiadjis, G.Z. (eds) Handbook of Damage Mechanics . Springer, Cham. https://doi.org/10.1007/978-3-030-60242-0_67

Download citation

Publish with us

Policies and ethics