Skip to main content

A Hierarchical-Tree-Based Method for Generative Zero-Shot Learning

  • Conference paper
  • First Online:
  • 1816 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12453))

Abstract

It is currently a popular practice to use the class semantic information and the conditional generative adversarial network (CGAN) technique to generate visual features for the unseen classes in zero-shot learning (ZSL). However, there is currently no good ways to ensure that the generated visual features can always be beneficial to the prediction of the unseen classes. To alleviate this problem, we propose a hierarchical-tree-based method for constraining the generation process of CGAN, which can tune the generated visual features based on the multi-level class information. Moreover, to enhance the mapping ability of the model from the visual space to the semantic space, we add a multi-expert module to the traditional single mapping channel, which helps the model to mine the mapping relationship between the visual space and the semantic space. Extensive experimental results on five benchmark data sets show that our method can achieve better generalization ability than other existing generative ZSL algorithms.

This work was supported by National Natural Science Foundation of China (61836005, 61976141, 61732011), and the Opening Project of Shanghai Trusted Industrial Control Platform (TICPSH202003008-ZC).

X. Wang and Z. Xie—Joint first authors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for attribute-based classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 819–826 (2013)

    Google Scholar 

  2. Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evaluation of output embeddings for fine-grained image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2927–2936 (2015)

    Google Scholar 

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 70, pp. 214–223 (2017)

    Google Scholar 

  4. Cao, W., Gao, J., Ming, Z., Cai, S., Shan, Z.: Fuzziness-based online sequential extreme learning machine for classification problems. Soft Comput. 22(11), 3487–3494 (2018). https://doi.org/10.1007/s00500-018-3021-4

    Article  Google Scholar 

  5. Cao, W., Wang, X., Ming, Z., Gao, J.: A review on neural networks with random weights. Neurocomputing 275, 278–287 (2018)

    Article  Google Scholar 

  6. Ebenezer, J.P., Das, B., Mukhopadhyay, S.: Single image haze removal using conditional wasserstein generative adversarial networks. In: 2019 27th European Signal Processing Conference, pp. 1–5. IEEE (2019)

    Google Scholar 

  7. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1778–1785. IEEE (2009)

    Google Scholar 

  8. Felix, R., Kumar, V.B., Reid, I., Carneiro, G.: Multi-modal cycle-consistent generalized zero-shot learning. In: Proceedings of the European Conference on Computer Vision, pp. 21–37 (2018)

    Google Scholar 

  9. Frome, A., et al.: DeViSe: a deep visual-semantic embedding model. In: Advances in Neural Information Processing Systems, pp. 2121–2129 (2013)

    Google Scholar 

  10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  11. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Jiang, H., Wang, R., Shan, S., Chen, X.: Transferable contrastive network for generalized zero-shot learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9765–9774 (2019)

    Google Scholar 

  14. Karessli, N., Akata, Z., Schiele, B., Bulling, A.: Gaze embeddings for zero-shot image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4525–4534 (2017)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–958. IEEE (2009)

    Google Scholar 

  17. Li, J., Jing, M., Lu, K., Zhu, L., Yang, Y., Huang, Z.: Alleviating feature confusion for generative zero-shot learning. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1587–1595 (2019)

    Google Scholar 

  18. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30, p. 3 (2013)

    Google Scholar 

  19. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  20. Mishra, A., Krishna Reddy, S., Mittal, A., Murthy, H.A.: A generative model for zero shot learning using conditional variational autoencoders. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 2188–2196 (2018)

    Google Scholar 

  21. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics and Image Processing, pp. 722–729. IEEE (2008)

    Google Scholar 

  22. Palatucci, M., Pomerleau, D., Hinton, G.E., Mitchell, T.M.: Zero-shot learning with semantic output codes. In: Advances in Neural Information Processing Systems, pp. 1410–1418 (2009)

    Google Scholar 

  23. Patterson, G., Xu, C., Su, H., Hays, J.: The sun attribute database: beyond categories for deeper scene understanding. Int. J. Comput. Vis. 108(1–2), 59–81 (2014)

    Article  Google Scholar 

  24. Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: popular nearest neighbors in high-dimensional data. J. Mach. Learn. Res. 11(Sep), 2487–2531 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396 (2016)

  26. Reed, S.E., Akata, Z., Mohan, S., Tenka, S., Schiele, B., Lee, H.: Learning what and where to draw. In: Advances in Neural Information Processing Systems, pp. 217–225 (2016)

    Google Scholar 

  27. Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot learning. In: International Conference on Machine Learning, pp. 2152–2161 (2015)

    Google Scholar 

  28. Socher, R., Ganjoo, M., Manning, C.D., Ng, A.: Zero-shot learning through cross-modal transfer. In: Advances in Neural Information Processing Systems, pp. 935–943 (2013)

    Google Scholar 

  29. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset (2011)

    Google Scholar 

  30. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly. IEEE Trans. Pattern Anal. Mach. Intell. 41(9), 2251–2265 (2018)

    Article  Google Scholar 

  31. Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5542–5551 (2018)

    Google Scholar 

  32. Zheng, M., et al.: Conditional wasserstein generative adversarial network-gradient penalty-based approach to alleviating imbalanced data classification. Inf. Sci. 512, 1009–1023 (2020)

    Article  Google Scholar 

  33. Zhu, Y., Elhoseiny, M., Liu, B., Peng, X., Elgammal, A.: A generative adversarial approach for zero-shot learning from noisy texts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1004–1013 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weipeng Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Xie, Z., Cao, W., Ming, Z. (2020). A Hierarchical-Tree-Based Method for Generative Zero-Shot Learning. In: Qiu, M. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2020. Lecture Notes in Computer Science(), vol 12453. Springer, Cham. https://doi.org/10.1007/978-3-030-60239-0_24

Download citation

Publish with us

Policies and ethics