Skip to main content

Introduction to Evidence-Based Robust Optimisation

  • Chapter
  • First Online:
Optimization Under Uncertainty with Applications to Aerospace Engineering

Abstract

This chapter introduces the concept of Evidence-Based Robust Optimisation (EBRO) and a few computational methods that allow calculating a robust solution when uncertainty is modelled with Dempster–Shafer Theory of evidence (DST). The chapter provides the basic elements of DST and the framework in which DST can be introduced in the robust optimisation of engineering systems. The main interest is in using DST to quantify extreme cases of epistemic uncertainty. EBRO inserts DST within an optimisation loop to generate a solution that maximises a given performance index (the quantity of interest) and the belief in its value at the same time. The chapter introduces also a decomposition approach that allows one to calculate an approximation to Belief and Plausibility in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Larouche, NASA mass growth analysis - spacecraft & subsystems, in 2014 NASA Cost SymposiumLaRC, August 14, vol. 117 (2014)

    Google Scholar 

  2. S. Division, Space engineering. Engineering design model data exchange (CDF) (2010)

    Google Scholar 

  3. ANSI/AIAA, S-120A-201X Draft for public review American national standard mass properties control for space systems (2015)

    Google Scholar 

  4. D. Woods, Creating foresight: how resilience engineering can transform NASAs approach to risky decision making. Work 4, 137–144 (2003)

    Google Scholar 

  5. A.M. Madni, S. Jackson, Towards a conceptual framework for resilience engineering. IEEE Syst. J. 3(2), 181–191 (2009). https://doi.org/10.1109/JSYST.2009.2017397

    Article  ADS  Google Scholar 

  6. A.W. Wymore, Model-Based Systems Engineering (U. of A. series editor A. Terry Bahill, Ed.) (C. Press, Boca Raton, Florida, 1993)

    Google Scholar 

  7. S.A. Sheard, Twelve Systems Engineering Roles. INCOSE Int. Symp. 6, 478–485 (2014). https://doi.org/10.1002/j.2334-5837.1996.tb02042.x

    Article  Google Scholar 

  8. N.V. Sahinidis, Optimization under uncertainty: state-of-the-art and opportunities. Comput. Chem. Eng. 28, 97–183 (2004). https://doi.org/10.1016/j.compchemeng.2003.09.017

    Article  Google Scholar 

  9. T.A. Zang, M.J. Hemsch, M.W. Hilburger, S.P. Kenny, J.M. Luckring, P. Maghami, et al., Needs and opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicles. NASA Tech Reports Serv 211462:paste (2002)

    Google Scholar 

  10. H.G. Beyer, B. Sendhoff, Robust optimization - a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196, 3190–3218 (2007). https://doi.org/10.1016/j.cma.2007.03.003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. E. Zio, Reliability engineering: old problems and new challenges. Reliab. Eng. Syst. Saf. 94, 125–141 (2009). https://doi.org/10.1016/j.ress.2008.06.002

    Article  Google Scholar 

  12. G. Punzo, A. Tewari, E. Butans, M. Vasile, A. Purvis, M. Mayfield, et al., Engineering resilient complex systems: the necessary shift toward complexity science. IEEE Syst. J. 14, 3865–3874 (2020). https://doi.org/10.1109/jsyst.2019.2958829

    Article  ADS  Google Scholar 

  13. S.N. Naghshbandi, L. Varga, A. Purvis, R. Mcwilliam, E. Minisci, M. Vasile, et al., A review of methods to study resilience of complex engineering and engineered systems. IEEE Access 44, 11 (2020). https://doi.org/10.1109/access.2020.2992239

    Google Scholar 

  14. C.N. Calvano, P. John, Systems engineering in an age of complexity. Syst. Eng. 7, 25–34 (2004). https://doi.org/10.1002/sys.10054

    Article  Google Scholar 

  15. S.A. Sheard, A. Mostashari, Principles of complex systems for systems engineering. Syst. Eng. 12, 295–311 (2009). https://doi.org/10.1002/sys.20124

    Article  Google Scholar 

  16. W. Yao, X. Chen, W. Luo, M. van Tooren, J. Guo, Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles. Prog. Aerosp. Sci. 47, 450–479 (2011). https://doi.org/10.1016/J.PAEROSCI.2011.05.001

    Article  Google Scholar 

  17. J.C. Helton, J.D. Johnson, W.L. Oberkampf, C.J. Sallaberry, Representation of analysis results involving aleatory and epistemic uncertainty. Int. J. Gen. Syst. 39, 605–646 (2010). https://doi.org/10.1080/03081079.2010.486664

    Article  MathSciNet  MATH  Google Scholar 

  18. A.P. Dempster, Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist. 38(2), 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Shafer, A Mathematical Theory of Evidence (Princeton University Press, Princeton, 1976)

    Book  MATH  Google Scholar 

  20. M. Vasile, E. Minisci, F. Zuiani, E. Komninou, Q. Wijnands, Fast evidence-based space system engineering, in IAC (2011)

    Google Scholar 

  21. C.O. Absil, G. Filippi, A. Riccardi, M. Vasile, A variance-based estimation of the resilience indices in the preliminary design optimisation of engineering systems under epistemic uncertainty, in EUROGEN (2017)

    Google Scholar 

  22. J.C. Helton, J.D. Johnson, W.L. Oberkampf, C.B. Storlie, A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory. Comput. Methods Appl. Mech. Eng. 196, 3980–3998 (2007). https://doi.org/10.1016/j.cma.2006.10.049.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. W. Yao, X. Chen, Y. Huang, Z. Gurdal, M. Van Tooren, Sequential optimization and mixed uncertainty analysis method for reliability-based optimization. AIAA J. 51, 2266–2277, (2013). https://doi.org/10.2514/1.J052327

    Article  ADS  Google Scholar 

  24. H. Agarwal, J.E. Renaud, E.L. Preston, D. Padmanabhan, Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliab. Eng. Syst. Saf. 85, 28194 (2004). https://doi.org/10.1016/J.RESS.2004.03.017

    Article  Google Scholar 

  25. Z.P. Mourelatos, J. Zhou, A design optimization method using evidence theory. J. Mech. Des. Trans. ASME 128, 901–908 (2006). https://doi.org/10.1115/1.2204970

    Article  Google Scholar 

  26. P. Pedersen, C.L. Laureen, Design for minimum stress concentration by finite elements and linear programming. J. Struct. Mech. 10, 375–391 (1982). https://doi.org/10.1080/03601218208907419

    Article  Google Scholar 

  27. M. Nicolich, G. Cassio, System models simulation process manangement and collaborative multidisciplinary optimization, in CEUR Workshop Proceedings, Rome, vol. 1300 (2014), pp. 1–16

    Google Scholar 

  28. G.J. Park, T.H. Lee, K.H. Lee, K.H. Hwang, Robust design: an overview. AIAA J. 44, 181–191 (2006). https://doi.org/10.2514/1.13639

    Article  ADS  Google Scholar 

  29. M. Kalsi, K. Hacker, K. Lewis, A comprehensive robust design approach for decision trade-offs in complex systems design. J. Mech. Des. Trans. ASME 123, 1–10 (2001). https://doi.org/10.1115/1.1334596

    Article  Google Scholar 

  30. X. Du, W. Chen, Towards a better understanding of modeling feasibility robustness in engineering design. J. Mech. Des. Trans. ASME 122, 385–394 (2000). https://doi.org/10.1115/1.1290247

    Article  Google Scholar 

  31. X. Zhuang, R. Pan, L. Wang, Robustness and reliability consideration in product design optimization under uncertainty, in IEEE International Conference on Industrial Engineering and Engineering Management (IEEE, Piscataway, 2011), pp. 132–159. https://doi.org/10.1109/IEEM.2011.6118131

    Google Scholar 

  32. A. Lewis, Robust regularization, Technical Report, Simon Fraser University, Vancouver (2002)

    Google Scholar 

  33. M. Trosset, Taguchi and robust optimization, Technical Report, 96-31, Department of Computational & Applied Mathematics, Rice University (1996)

    Google Scholar 

  34. M. McIlhagga, P. Husbands, R. Ives, A comparison of search techniques on a wing-box optimisation problem, in Parallel Problem Solving from Nature ed. by H.-M. Voigt, W. Ebeling, I. Rechenberg, H.-P. Schwefel, vol. 4 (Springer, Berlin, 1996), pp. 614–623

    Google Scholar 

  35. J. Herrmann, A genetic algorithm for minimax optimization problems, in Proceedings of the Congress on Evolutionary Computation, vol. 2 (IEEE Press, New York, 1999), pp. 1099–1103

    Google Scholar 

  36. L. El Ghaoui, H. Lebret, Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18(4), 1035–1064 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. H.-G. Beyer, M. Olhofer, B. Sendhoff, On the behavior of μ∕μ I, λ-ES optimizing functions disturbed by generalized noise, in Foundations of Genetic Algorithms, ed. by K. De Jong, R. Poli, J. Rowe, vol. 7 (Morgan Kaufman, San Francisco, 2003), pp. 307–328

    Google Scholar 

  38. I. Das, Robustness optimization for constrained, nonlinear programming problems, Tech. Rep. TR97-01, Technical Reports, Department of Computational & Applied Mathematics, Rice University, Houston, TX (1997)

    Google Scholar 

  39. J. Mulvey, R. Vanderbei, S. Zenios, Robust optimization of large-scale systems. Oper. Res. 43(2), 264–281 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. W. Chen, M. Wiecek, J. Zhang, Quality utility a compromise programming approach to robust design. ASME J. Mech. Des. 121(2), 179–187 (1999)

    Article  Google Scholar 

  41. N. Rolander, J. Rambo, Y. Joshi, J. Allen, F. Mistree, An approach to robust design of turbulent convective systems. J. Mech. Des. 128(4), 844–855 (2006)

    Article  Google Scholar 

  42. Y. Jin, B. Sendhoff, Trade-off between performance and robustness: an evolutionary multiobjective approach, in Evolutionary Multi-Criterion Optimization: Second International Conference, EMO 2003, ed. by C. Fonseca, P. Fleming, E. Zitzler, K. Deb (Springer, Heidelberg, 2003), pp. 237–251

    Chapter  MATH  Google Scholar 

  43. W.L. Oberkampf, J.C. Helton, Investigation of evidence theory for engineering applications, in Fourth Non-Deterministic Approaches Forum, vol. 1569 (AIAA, Reston, 2002)

    Google Scholar 

  44. L. Simoes, Fuzzy optimization of structures by the two-phase method. Comput. Struct. 79(2628), 2481–2490 (2001)

    Article  Google Scholar 

  45. F. Campos, J. Villar, M. Jimenez, Robust solutions using fuzzy chance constraints. Eng. Optim. 38(6), 627–645 (2006)

    Article  MathSciNet  Google Scholar 

  46. J. Liu, J.-B. Yang, J. Wang, H.S. Sii, Review of uncertainty reasoning approaches as guidance for maritime and offshore safety-based assessment. J. UK Saf. Reliab. Soc. 23(1), 63–80 (2002)

    Google Scholar 

  47. M. Vasile, Robust mission design through evidence theory and multiagent collaborative search. Ann. New York Acad. Sci. 1065, 152–173 (2005)

    Article  ADS  Google Scholar 

  48. N. Croisard, M. Vasile, S. Kemble, G. Radice, Preliminary space mission design under uncertainty. Acta Astronaut. 66, 5–6 (2010)

    Article  Google Scholar 

  49. R.W. Chaney, A method of centers algorithm for certain minimax problems. Math. Program. 22(1), 202–226 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  50. R. Klessig, E. Polak, A method of feasible directions using function approximations, with applications to min max problems. J. Math. Anal. Appl. 41(3) 583–602 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  51. V. Panin, Linearization method for continuous min-max problem. Cybernetics 17(2), 239–243 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  52. Y. Danilin, V. Panin, B. Pshenichnyi, On the Shannon Gapacity of a graph. Notes Control Inf. Sci. 23(30), 51–57 (1982)

    Google Scholar 

  53. V.F. Damyanov, VN Malozemov (Wiley, New York, 1974)

    Google Scholar 

  54. D. Agnew, Improved minimax optimization for circuit design. IEEE Trans. Circuits Syst. 28(8), 791–803 (1981)

    Article  MathSciNet  Google Scholar 

  55. J. Shinn-Hwa Wang, W. Wei-Ming Dai, Transformation of min-max optimization to least-square estimation and application to interconnect design optimization, in Proceedings of ICCD’95 International Conference on Computer Design. VLSI in Computers and Processors (IEEE Computer Society Press, Washington, 1995), pp. 664–670

    Google Scholar 

  56. B. Lu, Y. Cao, M. Yuan, J. Zhou, Reference variable methods of solving minmax optimization problems. J. Global Optim. 42(1), 1–21 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. M. Sainz, P. Herrero, J. Armengol, J. Veh, Continuous minimax optimization using modal intervals. J. Math. Anal. Appl 339, 18–30 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Y. Feng, L. Hongwei, Z. Shuisheng, L. Sanyang, A smoothing trust-region Newton-CG method for minimax problem. Appl. Math. Comput. 199(2), 581–589 (2008)

    MathSciNet  MATH  Google Scholar 

  59. P. Parpas, B. Rustem, An algorithm for the global optimization of a class of continuous minimax problems. J. Optim. Theory Appl. 141, 46–173 (2009). https://doi.org/10.1007/s10957-008-9473-4

    Article  MathSciNet  MATH  Google Scholar 

  60. H. Aissi, C. Bazgan, D. Vanderpooten, Min-max and min-max regret versions of combinatorial optimization problems: a survey. Eur. J. Oper. Res. 197, 427–438 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  61. T.M. Cavalier, W.A. Conner, E. del Castillo, S.I. Brown, A heuristic algorithm for minimax sensor location in the plane. Eur. J. Oper. Res. 183(1), 42–55 (2007)

    Article  MATH  Google Scholar 

  62. D. Ahr, G. Reinelt, A tabu search algorithm for the min-max k-Chinese postman problem. Comput. Oper. Res. 33(12), 3403–3422 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  63. A.M. Cramer, S.D. Sudhoff, E.L. Zivi, Evolutionary algorithms for minimax problems in robust design. IEEE Trans. Evol. Comput. 13(2), 444–453 (2009)

    Article  Google Scholar 

  64. R.I. Lung, D. Dumitrescu, A new evolutionary approach to minimax problems, in IEEE Congress on Evolutionary Computation (CEC), 5–8 June 2011, New Orleans (2011), pp. 1902–1905. https://doi.org/10.1109/CEC.2011.5949847

  65. A. Zhou, Q. Zhang, A surrogate-assisted evolutionary algorithm for minimax optimization, in IEEE Conference on Evolutionary Computation (CEC) (2010)

    Google Scholar 

  66. E.C. Laskari, K.E. Parsopoulos, M.N. Vrahatis, Particle swarm optimization for minimax problems, in Proceedings of the 2002 Congress on Evolutionary Computation (IEEE Press, New York, 2002), pp. 1582–1587

    Google Scholar 

  67. W. Conner, Comparison of evolutionary algorithms on the minimax sensor location problem. The Pennsylvania State University, 310.

    Google Scholar 

  68. A.M. Cramer, S.D. Sudhoff, E.L. Zivi, Evolutionary algorithms for minimax problems in robust design. IEEE Trans. Evol. Comput. 13, 444–453 (2009). https://doi.org/10.1109/TEVC.2008.2004422

    Article  Google Scholar 

  69. D. Agnew, Improved minimax optimization for circuit design. IEEE Trans. Circuits Syst. 28(8), 791–803 (1981)

    Article  MathSciNet  Google Scholar 

  70. A.V. Sebald, J. Schlenzig, Minimax design of neural net controllers for highly uncertain plants. IEEE Trans. Neural Netw. 5(1), 73–82 (1994)

    Article  Google Scholar 

  71. H.J.C. Barbosa, A coevolutionary genetic algorithm for a game approach to structural optimization, in Proceedings of the 7-th International Conference on Genetic Algorithms (1997), pp. 545–552

    Google Scholar 

  72. H.J.C. Barbosa, A coevolutionary genetic algorithm for constrained optimization, in Proceedings of 1999 Congress on Evolutionary Computation, ed. by P. Angeline et. al. (1997), pp. 1605–1611

    Google Scholar 

  73. J.W. Herrmann, A genetic algorithm for minimax optimization problems, in Proceedings of 1999 Congress on Evolutionary Computation, ed. by P. Angeline et. al. (1997), pp. 1099–1103

    Google Scholar 

  74. T.M. Jensen, A new look at solving minimax problems with coevolutionary genetic algorithms, in Metaheuristics: Computer Decision-Making. Applied Optimization, vol. 86 (Springer, Boston, 2003), pp 369–384

    Google Scholar 

  75. Y.S. Ong, P.B. Nair, A.J. Keane, K.W. Wong, Surrogate-assisted evolutionary optimization frameworks for high-fidelity engineering design problems, in Knowledge Incorporation in Evolutionary Computation (Springer, Berlin, 2004), pp. 307–332

    Google Scholar 

  76. Y. Jin, A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9(1), 3–12 (2005)

    Article  Google Scholar 

  77. J. Marzat, E. Walker, H. Piet-Lahanier, Worst-case global optimization of black-box functions through kriging and relaxation. J. Global Optim. 55, 707–727 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  78. G. Filippi, M. Vasile, A memetic approach to the solution of constrained min-max problems, in 2019 IEEE Congress on Evolutionary Computation (CEC) (2019), pp. 506–513. https://doi.org/10.1109/CEC.2019.8790124

  79. J.C. Helton, J. Johnson, W.L. Oberkampf, C. Sallaberry, Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty. Reliab. Eng. Syst. Saf. 91(10–11), 1414–1434 (2006)

    Article  Google Scholar 

  80. C. Joslyn, J.C. Helton, Bounds on belief and plausibility of functionality propagated random sets, in 2002 Annual Meetings of the North American Fuzzy Information Processing Society, Proceedings, ed. by J. Keller, O. Nasraoui, June 2002, New Orleans, vol. 2729 (IEEE, Piscataway, 2002), pp. 412–417

    Google Scholar 

  81. C. Joslyn, V. Kreinovich, Convergence properties of an interval probabilistic approach to system reliability estimation. Int. J. Gen. Syst. 34(4), 465–482 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  82. M. Di Carlo, M. Vasile, C. Greco, R. Epenoy, Robust optimisation of low-thrust interplanetary transfers using evidence theory, in 29th AAS/AIAA Space Flight Mechanics Meeting (2019)

    Google Scholar 

  83. F. Voorbraak, A computationally efficient approximation of Dempster-Shafer theory. Int. J. Man-Mach. Stud. 30, 525–536 (1989)

    Article  MATH  Google Scholar 

  84. D. Dubois, H. Prade, Consonant approximations of belief functions. Int. J. Approx. Reason. 4, 419–449 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  85. B. Tessem, Approximations for efficient computation in the theory of evidence. Artif. Intell. 61(2), 315–329 (1993)

    Article  MathSciNet  Google Scholar 

  86. M. Bauer, Approximations for decision making in the Dempster-Shafer theory of evidence, in Proceedings of Twelfth International Conference on Uncertainty in Artificial Intelligence (1996), pp. 73–80

    Google Scholar 

  87. D. Han, J. Dezert, Y. Yang, Two novel methods for BBA approximation based on focal element redundancy, in 18th International Conference on Information Fusion (2015), p. 428–434

    Google Scholar 

  88. T. Denux, Inner and outer approximation of belief structures using a hierarchical clustering approach. Int. J. Uncertainty Fuzziness Knowledge Based Syst. 9(4), 437–460 (2001)

    Article  MathSciNet  Google Scholar 

  89. D. Harmanec, Faithful approximations of belief functions, in Proceedings of 15th Conference on Uncertainty in Artificial Intelligence (1999), p. 2718

    Google Scholar 

  90. M. Vasile, G. Filippi, C. Ortega, A. Riccardi, Fast belief estimation in evidence network models, in EUROGEN 2017 (2017)

    Google Scholar 

  91. S. Alicino, M. Vasile, Evidence-based preliminary design of spacecraft, in 6th International Conference on Systems & Concurrent Engineering for Space Applications SECESA 2014 (2014)

    Google Scholar 

  92. G. Filippi, M. Vasile, D. Krpelik, P.Z. Korondi, M. Marchi, C. Poloni, Space systems resilience optimisation under epistemic uncertainty. Acta Astronaut. 165, 195–210 (2019). https://doi.org/10.1016/j.actaastro.2019.08.024

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Filippi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filippi, G., Vasile, M. (2021). Introduction to Evidence-Based Robust Optimisation. In: Vasile, M. (eds) Optimization Under Uncertainty with Applications to Aerospace Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-60166-9_17

Download citation

Publish with us

Policies and ethics