Skip to main content

Frontiers for Future Research. Two-Photonic, Highly Excited and Single-Molecular Sensors

  • Chapter
  • First Online:
Introduction to Fluorescence Sensing
  • 558 Accesses

Abstract

The future-oriented tendencies in fluorescence sensing science and technology are the broadest exploration of photophysical principles and mechanisms and also the miniaturization leading to the detection of single molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuna G, Grohmann D, Tinnefeld P (2014) Enhancing single-molecule fluorescence with nanophotonics. FEBS Lett 588:3547–3552

    Article  CAS  PubMed  Google Scholar 

  • Ambrose W, Moerner W (1991) Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal. Nature 349:225–227

    Google Scholar 

  • Baddeley D, Bewersdorf J (2018) Biological insight from super-resolution microscopy: what we can learn from localization-based images. Annu Rev Biochem 87:965–989

    Article  CAS  PubMed  Google Scholar 

  • Barbillon G (2017) Nanoplasmonics: fundamentals and applications. BoD–Books on Demand

    Google Scholar 

  • Bazylewski P, Ezugwu S, Fanchini G (2017) A review of three-dimensional scanning near-field optical microscopy (3D-SNOM) and its applications in nanoscale light management. Appl Sci 7:973

    Article  CAS  Google Scholar 

  • Belfield KD, Bondar MV, Hernandez FE, Przhonska OV, Yao S (2006) Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly. Chem Phys 320:118–124

    Article  CAS  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  PubMed  Google Scholar 

  • Bon M, McGowan SJ, Cook PR, Bon M, Mcgowan SJ, Cook PR (2006) Many expressed genes in bacteria and yeast are transcribed only once per cell cycle. FASEB J 20:1721–1723

    Article  CAS  PubMed  Google Scholar 

  • Bulat K, Rygula A, Szafraniec E, Ozaki Y, Baranska M (2017) Live endothelial cells imaged by Scanning Near-field Optical Microscopy (SNOM): capabilities and challenges. J Biophotonics 10:928–938

    Article  CAS  PubMed  Google Scholar 

  • Caixeiro S, Gaio M, Marelli B, Omenetto FG, Sapienza R (2016) Silk-based biocompatible random lasing. Adv Opt Mater 4:998–1003

    Article  CAS  Google Scholar 

  • Cao L, Wang X, Meziani MJ, Lu F, Wang H et al (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee T, Li Z, Khanna K, Montoya K, Tewari M et al (2020) Ultraspecific analyte detection by direct kinetic fingerprinting of single molecules. TrAC, Trends Anal Chem 123:115764

    Article  CAS  Google Scholar 

  • Chen Y-C, Chen Q, Fan X (2016) Lasing in blood. Optica 3:809–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Wang K, Huang S, Zhang H, Zhang H, Wang Y (2015) Organic crystals with near-infrared amplified spontaneous emissions based on 2′-Hydroxychalcone derivatives: subtle structure modification but great property change. Angew Chem Int Ed 54:8369–8373

    Article  CAS  Google Scholar 

  • Choi SH, Kim YL (2014) The potential of naturally occurring lasing for biological and chemical sensors. Biomed Eng Lett 4:201–212

    Article  Google Scholar 

  • Chon JW, Iniewski K (2018) Nanoplasmonics: advanced device applications. CRC Press

    Google Scholar 

  • Deeb C, Pelouard J-L (2017) Plasmon lasers: coherent nanoscopic light sources. Phys Chem Chem Phys 19:29731–29741

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP (1992) Does biocatalysis involve inhomogeneous kinetics? FEBS Lett 310:211–215

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP (1994) Protein fluorescence, dynamics and function: exploration of analogy between electronically excited and biocatalytic transition states. Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol 1209:149–64

    Google Scholar 

  • Demchenko A (1997) Breaks in Arrhenius plots for enzyme reactions: the switches between different protein dynamics regimes? Comments Mol Cell Biophys 9:87–112

    CAS  Google Scholar 

  • Demchenko AP (2010) The concept of λ-ratiometry in fluorescence sensing and imaging. J Fluorescence 20:1099–1128

    Article  Google Scholar 

  • Demchenko AP (2016) Weber’s red-edge effect that changed the paradigm in photophysics and photochemistry. In Perspectives on fluorescence. Springer, pp 95–141

    Google Scholar 

  • Demchenko AP, Sytnik AI (1991a) Site selectivity in excited-state reactions in solutions. J Phys Chem 95:10518–10524

    Google Scholar 

  • Demchenko AP, Sytnik AI (1991b) Solvent reorganizational red-edge effect in intramolecular electron transfer. Proc National Acad Sci 88:9311–9314

    Google Scholar 

  • Demchenko AP, Heldt J, Waluk J, Chou PT, Sengupta PK et al (2014) Michael Kasha: from photochemistry and flowers to spectroscopy and music. Angew Chem Int Ed 53:14316–14324

    Article  CAS  Google Scholar 

  • Demchenko AP, Tomin VI, Chou P-T (2017) Breaking the Kasha rule for more efficient photochemistry. Chem Rev 117:13353–13381

    Article  CAS  PubMed  Google Scholar 

  • Deniz AA, Mukhopadhyay S, Lemke EA (2008) Single-molecule biophysics: at the interface of biology, physics and chemistry. J R Soc Interface 5:15–45

    Article  CAS  PubMed  Google Scholar 

  • Dickenson NE, Mooren OL, Erickson ES, Dunn RC (2014) Near-field scanning optical microscopy: a new tool for exploring structure and function in biology. In: Surface analysis and techniques in biology. Springer, pp 225–253

    Google Scholar 

  • Dickson RM, Norris DJ, Tzeng Y-L, Moerner W (1996) Three-dimensional imaging of single molecules solvated in pores of poly (acrylamide) gels. Science 274:966–968

    Article  CAS  PubMed  Google Scholar 

  • Doose S, Heilemann M, Michalet X, Weiss S, Kapanidis AN (2007) Periodic acceptor excitation spectroscopy of single molecules. Euro Biophys J Biophys Lett 36:669–674

    Article  CAS  Google Scholar 

  • Dunn RC (1999) Near-field scanning optical microscopy. Chem Rev 99:2891–2928

    Article  CAS  PubMed  Google Scholar 

  • Edholm O, Blomberg C (2000) Stretched exponentials and barrier distributions. Chem Phys 252:221–225

    Article  CAS  Google Scholar 

  • Foquet M, Korlach J, Zipfel WR, Webb WW, Craighead HG (2004) Focal volume confinement by submicrometer-sized fluidic channels. Anal Chem 76:1618–1626

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Przhonska OV, Padilha LA, Hagan DJ, Van Stryland EW et al (2006) Two-photon anisotropy: analytical description and molecular modeling for symmetrical and asymmetrical organic dyes. Chem Phys 321:257–268

    Article  CAS  Google Scholar 

  • Fu J, Padilha LA, Hagan DJ, Van Stryland EW, Przhonska OV et al (2007) Molecular structure—two-photon absorption property relations in polymethine dyes. J Opt Soc Am B-Opt Phys 24:56–66

    Article  CAS  Google Scholar 

  • Gai HW, Griess GA, Demeler B, Weintraub ST, Serwer P (2007) Routine fluorescence microscopy of single untethered protein molecules confined to a planar zone. J Microsc Oxford 226:256–262

    Article  CAS  Google Scholar 

  • Gaio M, Caixeiro S, Marelli B, Omenetto FG, Sapienza R (2017) Gain-based mechanism for p H sensing based on random lasing. Phys Rev Appl 7:034005

    Article  Google Scholar 

  • Ghosh A, Karedla N, Thiele JC, Gregor I, Enderlein J (2018) Fluorescence lifetime correlation spectroscopy: Basics and applications. Methods 140:32–39

    Article  PubMed  CAS  Google Scholar 

  • Goldenfeld N, Kadanoff LP (1999) Simple lessons from complexity. Science 284:87–89

    Article  CAS  PubMed  Google Scholar 

  • Gong C, Gong Y, Chen Q, Rao Y-J, Peng G-D, Fan X (2017) Reproducible fiber optofluidic laser for disposable and array applications. Lab Chip 17:3431–3436

    Article  CAS  PubMed  Google Scholar 

  • Gong C, Gong Y, Zhao X, Luo Y, Chen Q et al (2018) Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing. Lab Chip 18:2741–2748

    Article  CAS  PubMed  Google Scholar 

  • Gorris HH, Rissin DM, Walt DR (2007) Stochastic inhibitor release and binding from single-enzyme molecules. Proc Natl Acad Sci 104:17680–17685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunwald D, Cardoso MC, Leonhardt H, Buschmann V (2005) Diffusion and binding properties investigated by Fluorescence Correlation Spectroscopy (FCS). Curr Pharm Biotechnol 6:381–386

    Article  CAS  PubMed  Google Scholar 

  • Guillén M, Gámez F, Lopes-Costa T, Castro-Smirnov J, Wannemacher R et al (2018) Amplified spontaneous emission in action: sub-ppm optical detection of acid vapors in poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] thin films. Sens Actuators B Chem 255:1354–1361

    Article  CAS  Google Scholar 

  • Gupta A, Sankaran J, Wohland T (2018) Fluorescence correlation spectroscopy: the technique and its applications in soft matter. Phys Sci Rev 4. Article No. 20170104

    Google Scholar 

  • Gust A, Zander A, Gietl A, Holzmeister P, Schulz S et al (2014) A starting point for fluorescence-based single-molecule measurements in biomolecular research. Molecules 19:15824–15865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guzelturk B, Kelestemur Y, Olutas M, Delikanli S, Demir HV (2014) Amplified spontaneous emission and lasing in colloidal nanoplatelets. ACS Nano 8:6599–6605

    Google Scholar 

  • Ha T, Tinnefeld P (2012) Photophysics of fluorescence probes for single molecule biophysics and super-resolution imaging. Annu Rev Phys Chem 63:595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayward SL, Lund PE, Kang Q, Johnson-Buck A, Tewari M, Walter NG (2018) Ultraspecific and amplification-free quantification of mutant DNA by single-molecule kinetic fingerprinting. J Am Chem Soc 140:11755–11762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He GS, Zheng Q, Prasad PN, Grote JG, Hopkins FK (2006) Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex. Opt Lett 31:359–361

    Article  CAS  PubMed  Google Scholar 

  • Hohlbein J, Gryte K, Heilemann M, Kapanidis AN (2010) Surfing on a new wave of single-molecule fluorescence methods. Phys Biol 7:031001

    Article  PubMed  CAS  Google Scholar 

  • Hsu C-C, Lin C-C, Chou P-T, Lai C-H, Hsu C-W et al (2012) Harvesting highly electronically excited energy to triplet manifolds: state-dependent intersystem crossing rate in Os (II) and Ag (I) complexes. J Am Chem Soc 134:7715–7724

    Article  CAS  PubMed  Google Scholar 

  • Hsu YT, Lin YY, Chen YZ, Lin HY, Liao YM et al (2020) 3D Printed Random Lasers. Adv Mater Technol 5:1900742

    Article  CAS  Google Scholar 

  • Hu W, Zeng L, Wang Y, Liu Z, Ye X, Li C (2016) A ratiometric two-photon fluorescent probe for fluoride ion imaging in living cells and zebrafish. Analyst 141:5450–5455

    Article  CAS  PubMed  Google Scholar 

  • Ignesti E, Tommasi F, Fini L, Martelli F, Azzali N, Cavalieri S (2016) A new class of optical sensors: a random laser based device. Sci Rep 6:1–6

    Article  CAS  Google Scholar 

  • Ismail WZW, Jamaludin J, Ismail I, Ma S, Balakrishnan S, Dawes J (2018) Plasmonic effect on performance of random lasers. Adv Sci Lett 24:1689–1693

    Article  Google Scholar 

  • Johnson-Buck A, Su X, Giraldez MD, Zhao M, Tewari M, Walter NG (2015) Kinetic fingerprinting to identify and count single nucleic acids. Nat Biotechnol 33:730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosik KS (2016) Life at low copy number: how dendrites manage with so few mRNAs. Neuron 92:1168–1180

    Article  CAS  PubMed  Google Scholar 

  • Kozankiewicz B, Orrit M (2014) Single-molecule photophysics, from cryogenic to ambient conditions. Chem Soc Rev 43:1029–1043

    Article  CAS  PubMed  Google Scholar 

  • Krieger JW, Singh AP, Bag N, Garbe CS, Saunders TE et al (2015) Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms. Nat Protoc 10:1948–1974

    Article  CAS  PubMed  Google Scholar 

  • Lamichhane R, Solem A, Black W, Rueda D (2010) Single-molecule FRET of protein–nucleic acid and protein–protein complexes: surface passivation and immobilization. Methods 52:192–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y-J, Yeh T-W, Yang Z-P, Yao Y-C, Chang C-Y et al (2019) A curvature-tunable random laser. Nanoscale 11:3534–3545

    Article  CAS  PubMed  Google Scholar 

  • Lereu A, Passian A, Dumas P (2012) Near field optical microscopy: a brief review. Int J Nanotechnol 9:488–501

    Article  CAS  Google Scholar 

  • Li H, Vaughan JC (2018) Switchable fluorophores for single-molecule localization microscopy. Chem Rev 118:9412–9454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao W-C, Liao Y-M, Su C-T, Perumal P, Lin S-Y et al (2017) Plasmonic carbon-dot-decorated nanostructured semiconductors for efficient and tunable random laser action. ACS Appl Nano Mater 1:152–159

    Article  CAS  Google Scholar 

  • Liu Q, Guo B, Rao Z, Zhang B, Gong JR (2013) Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett 13:2436–2441

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yan W, Li H, Peng H, Suo X et al (2019a) Two-photon fluorescent probe for hypoxic cancer stem cells by responding to endogenous nitroreductase. Anal Methods 11: 421–426

    Google Scholar 

  • Liu Z, Hu Z, Zhang Z, Du J, Yang J et al (2019b) Two-photon pumped amplified spontaneous emission and lasing from formamidinium lead bromine nanocrystals. ACS Photonics 6:3150–3158

    Google Scholar 

  • Liu C-F, Lu T, Wang J, Lai W-Y, Huang W (2020) Low threshold amplified spontaneous emission from efficient energy transfer in blends of conjugated polymers. J Phys Chem C 124:8576–8583

    Article  CAS  Google Scholar 

  • Lu HP, Xun L, Xie XS (1998) Single-molecule enzymatic dynamics. Science 282:1877–1882

    Article  CAS  PubMed  Google Scholar 

  • Ma ZY, Gerton JM, Wade LA, Quake SR (2006) Fluorescence near-field microscopy of DNA at sub-10 nm resolution. Phys Rev Lett 97:260801

    Google Scholar 

  • Mao J, Yang X, Liu Y, Wang Y, Peng G-D et al (2020) Nanomaterial-enhanced fiber optofluidic laser biosensor for sensitive enzyme detection. J LightwaveTechnol 38:18

    Google Scholar 

  • Marquez S, Morales-Narváez E. 2019. Nanoplasmonics in paper-based analytical devices. Front Bioeng Biotechnol 7:69

    Google Scholar 

  • Mickert MJ, Gorris HH (2018) Transition-state ensembles navigate the pathways of enzyme catalysis. J Phys Chem B 122:5809–5819

    Article  CAS  PubMed  Google Scholar 

  • Moerner WE (2007) New directions in single-molecule imaging and analysis. Proc Natl Acad Sci USA 104:12596–12602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moerner W, Kador L (1989) Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 62:2535

    Article  CAS  PubMed  Google Scholar 

  • Moreshead WV, Przhonska OV, Bondar MV, Kachkovski AD, Nayyar IH et al (2013) Design of a new optical material with broad spectrum linear and two-photon absorption and solvatochromism. J Phys Chem C 117:23133–23147

    Article  CAS  Google Scholar 

  • Mukhopadhyay S, Deniz AA (2007) Fluorescence from diffusing single molecules illuminates biomolecular structure and dynamics. J Fluorescence 17:775–783

    Article  CAS  Google Scholar 

  • Nemkovich NA, Rubinov AN, Tomin VI (2002) Inhomogeneous broadening of electronic spectra of dye molecules in solutions. In: Topics in fluorescence spectroscopy, pp 367–428. Springer

    Google Scholar 

  • Niu W, Guo L, Li Y, Shuang S, Dong C, Wong MS (2016) Highly selective two-photon fluorescent probe for ratiometric sensing and imaging cysteine in mitochondria. Anal Chem 88:1908–1914

    Article  CAS  PubMed  Google Scholar 

  • Oura M, Yamamoto J, Ishikawa H, Mikuni S, Fukushima R, Kinjo M (2016) Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell. Sci Rep 6:31091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papkovsky DB, O’Riordan T, Soini A (2000) Phosphorescent porphyrin probes in biosensors and sensitive bioassays. Biochem Soc Trans 28:74–77

    Article  CAS  PubMed  Google Scholar 

  • Park J-E, Jung Y, Kim M, Nam J-M (2018) Quantitative nanoplasmonics. ACS Central Sci 4:1303–1314

    Article  CAS  Google Scholar 

  • Peng Z, Wang Z, Huang Z, Liu S, Lu P, Wang Y (2018) Expression of anti-Kasha’s emission from amino benzothiadiazole and its utilization for fluorescent chemosensors and organic light emitting materials. J Mater Chem C 6:7864–7873

    Article  CAS  Google Scholar 

  • Porter CM, Miller BG (2012) Cooperativity in monomeric enzymes with single ligand-binding sites. Bioorg Chem 43:44–50

    Article  CAS  PubMed  Google Scholar 

  • Przhonska OV, Webster S, Padilha LA, Hu H, Kachkovski AD et al (2010) Two-photon absorption in near-IR conjugated molecules: design strategy and structure–property relations In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology I: Fundamentals and molecular design, vol 8, Springer series on fluorescence, Springer, Heidelberg, pp 105–147

    Google Scholar 

  • Pu S-C, Yang M-J, Hsu C-C, Lai C-W, Hsieh C-C et al (2006) The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots. Small 2:1308–1313

    Article  CAS  PubMed  Google Scholar 

  • Rahbany N, Izeddin I, Krachmalnicoff V, Carminati R, Tessier G, De Wilde Y (2019) Near-field scanning optical microscope combined with digital holography for three-dimensional electromagnetic field reconstruction. In: Label-free super-resolution microscopy. Springer, pp 113–36

    Google Scholar 

  • Richert R, Elschner A, Bassler H (1986) Experimental-study of nonexponential relaxation processes in random organic-solids. Zeitschrift Fur Physikalische Chemie Neue Folge 149:63–75

    Article  CAS  Google Scholar 

  • Rigler R, Elson ES (2012) Fluorescence correlation spectroscopy: theory and applications. Springer Science & Business Media

    Google Scholar 

  • Röhrs M, Escudero D (2019) Multiple anti-kasha emissions in transition-metal complexes. J Phys Chem Lett 10:5798–5804

    Article  PubMed  CAS  Google Scholar 

  • Rose A, Zhu Z, Madigan CF, Swager TM, Bulović V (2005a) Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434:876–879

    Google Scholar 

  • Rose A, Zhu ZG, Madigan CF, Swager TM, Bulovic V (2005b) Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434:876–879

    Google Scholar 

  • Sahl SJ, Hell SW, Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 18:685

    Article  CAS  PubMed  Google Scholar 

  • Sanditov DS, Ojovan MI (2019) Relaxation aspects of the liquid–glass transition. Phys Usp 62:111

    Article  CAS  Google Scholar 

  • Scharnagl C, Reif M, Friedrich J (2005) Stability of proteins: temperature, pressure and the role of the solvent. Biochim et Biophys Acta (BBA) Proteins Proteomics 1749:187–213

    Google Scholar 

  • Scherf U, Riechel S, Lemmer U, Mahrt R (2001) Conjugated polymers: lasing and stimulated emission. Curr Opin Solid State Mater Sci 5:143–154

    Article  CAS  Google Scholar 

  • Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M et al (2019) Super-resolution microscopy demystified. Nat Cell Biol 21:72–84

    Article  CAS  PubMed  Google Scholar 

  • Schwille P, Meyer-Almes F-J, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72:1878–1886

    Google Scholar 

  • Shang L, Nienhaus GU (2017) In situ characterization of protein adsorption onto nanoparticles by fluorescence correlation spectroscopy. Acc Chem Res 50:387–395

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Singh M, Sharma R (2020) Recent advances in STED and RESOLFT super-resolution imaging techniques. Spectrochim Acta Part A Mol Biomol Spectrosc 231:117715

    Article  CAS  Google Scholar 

  • She C, Fedin I, Dolzhnikov DS, Demortière A, Schaller RD et al (2014) Low-threshold stimulated emission using colloidal quantum wells. Nano Lett 14:2772–2777

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Fan W, Fan C, Lu Z, Bo Q et al (2017a) A two-photon fluorescent probe for imaging aqueous fluoride ions in living cells and tissues. Dyes Pigments 140:109–115

    Google Scholar 

  • Shi X, Liao Y-M, Lin H-Y, Tsao P-W, Wu M-J et al (2017b) Dissolvable and recyclable random lasers. ACS Nano 11:7600–7607

    Google Scholar 

  • Shi L, Yan C, Guo Z, Chi W, Wei J et al (2020) De novo strategy with engineering anti-Kasha/Kasha fluorophores enables reliable ratiometric quantification of biomolecules. Nat Commun 11:1–11

    Google Scholar 

  • Sigal YM, Zhou R, Zhuang X (2018) Visualizing and discovering cellular structures with super-resolution microscopy. Science 361:880–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • So PTC, Dong CY, Masters BR, Berland KM (2000) Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng 2:399–429

    Article  CAS  PubMed  Google Scholar 

  • Somers RC, Bawendi MG, Nocera DG (2007) CdSe nanocrystal based chem-/bio-sensors. Chem Soc Rev 36:579–591

    Article  CAS  PubMed  Google Scholar 

  • Streets AM, Huang Y (2014) Microfluidics for biological measurements with single-molecule resolution. Curr Opin Biotechnol 25:69–77

    Article  CAS  PubMed  Google Scholar 

  • Su D, Hou Y, Dong C, Ren J (2019) Fluctuation correlation spectroscopy and its applications in homogeneous analysis. In: Analytical and bioanalytical chemistry, pp 1–18

    Google Scholar 

  • Taylor AB, Zijlstra P (2017) Single-molecule plasmon sensing: current status and future prospects. ACS Sens 2:1103–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tetin SY, Hazlett TL (2000) Optical spectroscopy in studies of antibody–hapten interactions. Methods 20:341–361

    Article  CAS  PubMed  Google Scholar 

  • Thompson NL. 2002. Fluorescence correlation spectroscopy. In: Topics in fluorescence spectroscopy. Springer, pp 337–378

    Google Scholar 

  • Tiwari M, Oasa S, Yamamoto J, Mikuni S, Kinjo M (2017) A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell. Sci Rep 7:1–16

    Article  CAS  Google Scholar 

  • Tong J, Li S, Chen C, Fu Y, Cao F et al (2019) Flexible random laser using silver nanoflowers. Polymers 11:619

    Article  PubMed Central  CAS  Google Scholar 

  • Vangindertael J, Camacho R, Sempels W, Mizuno H, Dedecker P, Janssen K (2018) An introduction to optical super-resolution microscopy for the adventurous biologist. Methods Appl Fluorescence 6:022003

    Article  CAS  Google Scholar 

  • Voronin YM, Didenko IA, Chentsov YV (2006) Methods of fabricating and testing optical nanoprobes for near-field scanning optical microscopes. J Opt Technol 73:101–110

    Article  Google Scholar 

  • Wabuyele MB, Vo-Dinh T (2017) Nanoimaging of biomolecules using near-field scanning optical microscopy. Nanotechnol Biol Med Methods Dev Appl 127

    Google Scholar 

  • Wang Q, Goldsmith RH, Jiang Y, Bockenhauer SD, Moerner W (2012) Probing single biomolecules in solution using the anti-Brownian electrokinetic (ABEL) trap. Acc Chem Res 45:1955–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Huang X, Liu H, Dong C, Ren J (2017) Fluorescence and scattering light cross correlation spectroscopy and its applications in homogeneous immunoassay. Anal Chem 89:5230–5237

    Article  CAS  PubMed  Google Scholar 

  • Webster S, Fu J, Padilha LA, Przhonska OV, Hagan DJ et al (2008) Comparison of nonlinear absorption in three similar dyes: Polymethine, squaraine and tetraone. Chem Phys 348:143–151

    Article  CAS  Google Scholar 

  • Wisitsorasak A, Wolynes PG (2014) Dynamical heterogeneity of the glassy state. J Phys Chem B 118:7835–7847

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Szymanski C, Cain Z, McNeill J (2007) Conjugated polymer dots for multiphoton fluorescence imaging. J Am Chem Soc 129:12904–12905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Oo MKK, Reddy K, Chen Q, Sun Y, Fan X (2014) Optofluidic laser for dual-mode sensitive biomolecular detection with a large dynamic range. Nat Commun 5:1–7

    Google Scholar 

  • Wu J, Fan M, Deng G, Gong C, Chen K et al (2019) Optofluidic laser explosive sensor with ultralow detection limit and large dynamic range using donor-acceptor-donor organic dye. Sens Actuators B: Chem 298:126830

    Article  CAS  Google Scholar 

  • Xie XS, Trautman JK (1998) Optical studies of single molecules at room temperature. Annu Rev Phys Chem 49:441–480

    Article  CAS  PubMed  Google Scholar 

  • Xu A, Tang Y, Ma Y, Xu G, Gao S et al (2017) A fast-responsive two-photon fluorescent turn-on probe for nitroreductase and its bioimaging application in living tissues. Sens Actuators B: Chem 252:927–933

    Article  CAS  Google Scholar 

  • Yakunin S, Protesescu L, Krieg F, Bodnarchuk MI, Nedelcu G et al (2015) Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun 6:8056

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto J, Kinjo M (2019) Full fiber-optic fluorescence correlation spectroscopy. Opt Express 27:14835–14841

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Yang Y, Zhang C-y (2014) Single-molecule FRET for ultrasensitive detection of biomolecules. NanoBioImaging 1:13–24

    Google Scholar 

  • Yang A, Wang D, Wang W, Odom TW (2017) Coherent light sources at the nanoscale. Annu Rev Phys Chem 68:83–99

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Luo Y, Liu Y, Gong C, Wang Y et al (2020) Mass production of thin-walled hollow optical fibers enables disposable optofluidic laser immunosensors. Lab Chip 20:923–930

    Article  CAS  PubMed  Google Scholar 

  • Yashchuk VM, Gusak VV, Drnytruk IM, Prokopets VM, Kudrya VY et al (2007) Two-photon excited luminescent styryl dyes as probes for the DNA detection and imaging. Photostability and phototoxic influence on DNA. Mol Cryst Liq Cryst 467:325–338

    Article  CAS  Google Scholar 

  • Zhou L, Hu S, Wang H, Sun H, Zhang X (2016) A novel ratiometric two-photon fluorescent probe for imaging of Pd2+ ions in living cells and tissues. Spectrochim Acta Part a Mol Biomol Spectrosc 166:25–30

    Article  CAS  Google Scholar 

  • Zhou Y, Baryshnikov G, Li X, Zhu M, Ã…gren H, Zhu L (2018) Anti-Kasha’s rule emissive switching induced by intermolecular H-bonding. Chem Mater 30:8008–8016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. Demchenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demchenko, A.P. (2020). Frontiers for Future Research. Two-Photonic, Highly Excited and Single-Molecular Sensors. In: Introduction to Fluorescence Sensing. Springer, Cham. https://doi.org/10.1007/978-3-030-60155-3_16

Download citation

Publish with us

Policies and ethics