Skip to main content

Symbolic-Numeric Computation of the Bernstein Coefficients of a Polynomial from Those of One of Its Partial Derivatives and of the Product of Two Polynomials

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12291))

Included in the following conference series:

Abstract

The expansion of a given multivariate polynomial into Bernstein polynomials is considered. Matrix methods for the calculation of the Bernstein expansion of the product of two polynomials and of the Bernstein expansion of a polynomial from the expansion of one of its partial derivatives are provided which allow also a symbolic computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso, P., Delgado, J., Gallego, R., Peña, J.M.: Conditioning and accurate computations with Pascal matrices. J. Comput. Appl. Math. 252, 21–26 (2013)

    Article  MathSciNet  Google Scholar 

  2. Clauss, P., Chupaeva, I.Y.: Application of symbolic approach to the Bernstein expansion for program analysis and optimization. In: Duesterwald, E. (ed.) Compiler Construction. LNCS, vol. 2985, pp. 120–133. Springer, Berlin, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Clauss, P., Fernández, F.J., Garbervetsky, D., Verdoolaege, S.: Symbolic polynomial maximization over convex sets and its application to memory requirement estimation. IEEE Trans. Very Large Scale Integr. VLSI Syst. 17(8), 983–996 (2009)

    Article  Google Scholar 

  4. Dang, T., Dreossi, T., Fanchon, É., Maler, O., Piazza, C., Rocca, A.: Set-based analysis for biological modelling. In: Liò, P., Zuliani, P. (eds.) Automated Reasoning for Systems Biology and Medicine. COBO, vol. 30, pp. 157–189. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17297-8

  5. Dreossi, T.: Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems. In: Proceedings of International Conference Hybrid Systems: Computation and Control, pp. 29–34, ACM, New York (2017)

    Google Scholar 

  6. Farouki, R.T.: The Bernstein polynomial basis: A centennial retrospective. Comput. Aided Geom. Design 29, 379–419 (2012)

    Google Scholar 

  7. Farouki, R.T., Rajan, V.T.: Algorithms for polynomials in Bernstein form. Comput. Aided Geom. Design 5, 1–26 (1988)

    Article  MathSciNet  Google Scholar 

  8. Garloff, J.: Convergent bounds for the range of multivariate polynomials. In: Nickel, K. (ed.) Interval Mathematics 1985. LNCS, vol. 212, pp. 37–56. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16437-5_5

  9. Garloff, J., Smith, A.P.: Solution of systems of polynomial equations by using Bernstein expansion. In: Alefeld, G., Rump, S., Rohn, J., and Yamamoto J. (eds.), Symbolic Algebraic Methods and Verification Methods, pp. 87–97. Springer (2001)

    Google Scholar 

  10. Rivlin, T.J.: Bounds on a polynomial. J. Res. Nat. Bur. Standards 74(B), 47–54 (1970)

    Google Scholar 

  11. Rump, S.M.: INTLAB-INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  12. Smith, A.P.: Fast construction of constant bound functions for sparse polynomials. J. Global Optim. 43, 445–458 (2009)

    Article  MathSciNet  Google Scholar 

  13. Titi, J.: Matrix methods for the tensorial and simplicial Bernstein forms with application to global optimization, dissertation. University of Konstanz, Konstanz, Germany (2019). Available at https://nbn-resolving.de/urn:nbn:de:bsz:352-2-k106crqmste71

  14. Titi, J., Garloff, J.: Fast determination of the tensorial and simplicial Bernstein forms of multivariate polynomials and rational functions. Reliab. Comput. 25, 24–37 (2017)

    MathSciNet  Google Scholar 

  15. Titi, J., Garloff, J.: Matrix methods for the simplicial Bernstein representation and for the evaluation of multivariate polynomials. Appl. Math. Comput. 315, 246–258 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Titi, J., Garloff, J.: Matrix methods for the tensorial Bernstein form. Appl. Math. Comput. 346, 254–271 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Titi, J., Garloff, J.: Bounds for the range of a complex polynomial over a rectangular region, submitted (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Garloff .

Editor information

Editors and Affiliations

Appendices

Appendix A. Example for the Performance of Algorithm 1

Let p and q be bivariate polynomials of degree (4, 2) and (3, 2), respectively, with Bernstein matrices over u

$$\begin{aligned} \mathcal {B}(p, {\textit{\textbf{u}}}) = \begin{bmatrix} 2 &{} 0 &{} -1 ~\\ -2 &{} 3 &{} 0 ~\\ 1 &{} 3 &{} -3 ~\\ 1 &{} 0 &{} 1 ~\\ 0 &{} -1 &{} 0 ~ \end{bmatrix} \text{ and } \mathcal {B}(q, {\textit{\textbf{u}}}) = \begin{bmatrix} -1 &{} -4 &{} -1 ~\\ 2 &{} 0 &{} 5 ~\\ -2 &{} 3 &{} 0 ~\\ 0 &{} 1 &{} 1~ \end{bmatrix}. \end{aligned}$$

Then

$$\begin{aligned} D_1= & {} \mathrm {diag}(1, 4, 6, 4, 1) \text{ and } D_2 = \mathrm {diag}(1, 2, 1),\\ C_1(p)= & {} (D_1 C_0(p))^c = \begin{bmatrix} 2 &{} -8 &{} 6 &{} 4 &{} 0~\\ 0 &{} 12 &{} 18 &{} 0 &{} -1~\\ -1 &{} 0 &{} -18 &{} 4 &{} 0~ \end{bmatrix}, \\ C_2(p)= & {} (D_2 C_1(p))^c = \begin{bmatrix} 2 &{} 0 &{} -1~\\ -8 &{} 24 &{} 0~\\ 6 &{} 36 &{} -18~\\ 4&{} 0 &{} 4~\\ 0 &{} -2 &{} 0~ \end{bmatrix}; \end{aligned}$$
$$M_{0}^{(1,1)} = M_{0}^{(2,2)} =M_{0}^{(3,0)} = O_{5, 3},$$
$$\begin{aligned} M_{0}^{(0,0)} = \begin{bmatrix} -2 &{} 0 &{} 1~\\ 8 &{} -24 &{} 0~\\ -6 &{} -36 &{} 18~\\ -4&{} 0 &{} -4~\\ 0 &{} 2 &{} 0~ \end{bmatrix}, \;&M_{0}^{(0,1)} = \begin{bmatrix} -16 &{} 0 &{} 8~\\ 64 &{} -192 &{} 0~\\ -48 &{} -288 &{} 144~\\ -32 &{} 0 &{} -32~\\ 0 &{} 16 &{} 0~ \end{bmatrix}, \; M_{0}^{(0,2)} = \begin{bmatrix} -2 &{} 0 &{} 1~\\ 8 &{} -24 &{} 0~\\ -6 &{} -36 &{} 18~\\ -4&{} 0 &{} -4~\\ 0 &{} 2 &{} 0~ \end{bmatrix}\!, \end{aligned}$$
$$\begin{aligned} M_{0}^{(1,0)}&= \begin{bmatrix} 12 &{} 0 &{} -6~\\ -48 &{} 144 &{} 0~\\ 36 &{} 216 &{} -108~\\ 24 &{} 0 &{} 24~\\ 0 &{} -12 &{} 0~ \end{bmatrix}, \;&M_{0}^{(1,2)}&= \begin{bmatrix} 30 &{} 0 &{} -15~\\ -120 &{} 360 &{} 0~\\ 90 &{} 540 &{} -270~\\ 60 &{} 0 &{} 60~\\ 0 &{} -30 &{} 0~ \end{bmatrix}, \; \\ M_{0}^{(2,0)}&= \begin{bmatrix} -12 &{} 0 &{} 6~\\ 48 &{} -144 &{} 0~\\ -36 &{} -216 &{} 108~\\ -24&{} 0 &{} -24~\\ 0 &{} 12 &{} 0~ \end{bmatrix},&M_{0}^{(2,1)}&= \begin{bmatrix} 36 &{} 0 &{} -18~\\ -144 &{} 432 &{} 0~\\ 108 &{} 648 &{} -324~\\ 72&{} 0 &{} 72~\\ 0 &{} -36 &{} 0~ \end{bmatrix}, \; \\ M_{0}^{(3,1)}&= \begin{bmatrix} 4 &{} 0 &{} -2~\\ -16 &{} 48 &{} 0~\\ 12 &{} 72 &{} -36~\\ 8&{} 0 &{} 8~\\ 0 &{} -4 &{} 0~ \end{bmatrix}, \;&M_{0}^{(3,2)}&= \begin{bmatrix} 2 &{} 0 &{} -1~\\ -8 &{} 24 &{} 0~\\ 6 &{} 36 &{} -18~\\ 4&{} 0 &{} 4~\\ 0 &{} -2 &{} 0~ \end{bmatrix}; \end{aligned}$$
$$\begin{aligned} M_{1}^{(0,0)}&= \begin{bmatrix} -2 &{} 8 &{} -6 &{} -4 &{} 0 &{} 0 &{} 0 &{} 0~\\ 0 &{} -24 &{} -36 &{} 0 &{} 2 &{}0 &{} 0 &{} 0~\\ 1 &{} 0 &{} 18 &{} -4 &{} 0 &{} 0 &{} 0 &{} 0~ \end{bmatrix},&M_{2}^{(0,0)}&= \begin{bmatrix} -2 &{} 0 &{} 1 &{} 0 &{} 0~\\ 8 &{} -24 &{} 0 &{} 0 &{} 0~\\ -6 &{} -36 &{} 18 &{} 0 &{} 0~\\ -4 &{} 0 &{} -4 &{} 0 &{} 0~\\ 0 &{} 2 &{} 0 &{} 0 &{} 0~\\ 0 &{} 0 &{} 0 &{} 0 &{} 0~\\ 0 &{} 0 &{} 0 &{} 0 &{} 0~\\ 0 &{} 0 &{} 0 &{} 0 &{} 0~ \end{bmatrix}, \\ M_{1}^{(0,1)}&= \begin{bmatrix} -16 &{} 64 &{} -48 &{} -32 &{} 0 &{} 0 &{} 0 &{} 0~\\ 0 &{} -192 &{} -288 &{} 0 &{} 16 &{}0 &{} 0 &{} 0~\\ 8 &{} 0 &{} 144 &{} -32 &{} 0 &{} 0 &{} 0 &{} 0~ \end{bmatrix},&M_{2}^{(0,1)}&=\begin{bmatrix} ~0 &{}-16 &{} 0 &{} 8 &{} 0~ \\ ~0 &{} 64 &{} -192 &{} 0 &{} 0~ \\ ~0 &{} -48 &{} -288 &{} 144 &{} 0~\\ ~0 &{} -32 &{} 0 &{} -32 &{} 0~ \\ ~0 &{} 0 &{} 16 &{} 0 &{} 0~ \\ ~0 &{} 0 &{} 0 &{} 0 &{} 0~ \\ ~0 &{} 0 &{} 0 &{} 0 &{} 0~ \\ ~0 &{} 0 &{} 0 &{} 0 &{} 0~ \end{bmatrix}, \end{aligned}$$
$$\begin{aligned} M_{1}^{(0,2)}= & {} \begin{bmatrix} -2 &{} 8 &{} -6 &{} -4 &{} 0 &{} 0 &{} 0 &{} 0~\\ 0 &{} -24 &{} -36 &{} 0 &{} 2 &{}0 &{} 0 &{} 0~\\ 1 &{} 0 &{} 18 &{} -4 &{} 0 &{} 0 &{} 0 &{} 0~ \end{bmatrix}, \, M_{2}^{(0,2)} = \begin{bmatrix} ~0 &{} 0 &{} -2 &{} 0 &{} 1 ~\\ ~0 &{} 0 &{} 8 &{} -24 &{} 0 ~\\ ~0 &{} 0 &{} -6 &{} -36 &{} 18~\\ ~0 &{} 0 &{} -4 &{} 0 &{} -4 ~\\ ~0 &{} 0 &{} 0 &{} 2 &{} 0 ~\\ ~0 &{} 0 &{} 0 &{} 0 &{} 0 ~\\ ~0 &{} 0 &{} 0 &{} 0 &{} 0 ~\\ ~0 &{} 0 &{} 0 &{} 0 &{} 0 ~ \end{bmatrix}. \end{aligned}$$

The remaining 18 matrices \(M_s^{(i)}\), \(s=1, 2\), are formed analogously.

$$\begin{aligned} F_0 = C_0(pq) = \begin{bmatrix} -2 &{} -16 &{} -1 &{} 8 &{} 1~\\ 20 &{} 40 &{} -160 &{}-24 &{} -15~\\ -66 &{} 96 &{} -390 &{} 450 &{} 18~\\ 80 &{} -100 &{} 408 &{} 506 &{} -275~\\ -12 &{} -122 &{} 896 &{} -298 &{} 60~\\ -24 &{} 72 &{} 54 &{} 42 &{} -18~\\ 0 &{} 20 &{} -32 &{} 8 &{} 4~\\ 0 &{} 0 &{} 4 &{} -2 &{} 0~ \end{bmatrix}; \end{aligned}$$
$$\begin{aligned} D_{1}^{\prime } = \mathrm {diag}(1, \frac{1}{7}, \frac{1}{21}, \frac{1}{35}, \frac{1}{35}, \frac{1}{21}, \frac{1}{7}, 1), \; D_{2}^{\prime } = \mathrm {diag}(1, \frac{1}{4}, \frac{1}{6}, \frac{1}{4}, 1). \end{aligned}$$

The Bernstein matrix of the product of the polynomials p and q is given by

$$\begin{aligned} \mathcal {B}(pq, {\textit{\textbf{u}}}) = F_2 =(D_{2}^{\prime }(D_{1}^{\prime }F_0)^c)^c = \begin{bmatrix} -2 &{} -4 &{} \frac{-1}{6} &{} 2 &{} 1 \\ \frac{20}{7} &{} \frac{10}{7} &{} \frac{-80}{21} &{}\frac{-6}{7} &{} \frac{-15}{7} \\ \frac{-22}{7} &{} \frac{8}{7} &{} \frac{-65}{21} &{} \frac{75}{14} &{} \frac{6}{7} \\ \frac{16}{7} &{} \frac{-5}{7} &{} \frac{68}{35} &{} \frac{253}{70} &{} \frac{-55}{7} \\ \frac{-12}{35} &{} \frac{-61}{70} &{} \frac{64}{15} &{} \frac{-149}{70} &{} \frac{12}{7} \\ \frac{-8}{7} &{} \frac{6}{7} &{} \frac{3}{7} &{} \frac{1}{2} &{} \frac{-6}{7} \\ 0 &{} \frac{5}{7} &{} \frac{-16}{21} &{} \frac{2}{7} &{} \frac{4}{7} \\ 0 &{} 0 &{} \frac{2}{3} &{} \frac{-1}{2} &{} 0 \end{bmatrix}. \end{aligned}$$

Appendix B. Example for the Performance of the Method Presented in Sect. 5

Let \(p(x_1, x_2) = -504 x_1^4 x_2^2 - 84 x_1^4 x_2 + 288 x_1^4 + 6 x_1^3 x_2^2 + 30 x_1^3 x_2 - 60x_1^3 +36 x_1^2 x_2^2 - 20 x_1^2 x_2 + 28 x_1^2 -54 x_1 x_2^2 +21x_1 x_2 -24 x_1 + 24x_2^2 -24 x_2 +48\). Then

$$\begin{aligned} \mathcal {B}(\frac{\partial p}{\partial x_1}, {\textit{\textbf{u}}})= \begin{bmatrix} -24 &{}\frac{-27}{2} &{} -57 \\ -4 &{} \frac{-9}{6} &{} \frac{-83}{3} \\ \frac{-140}{3} &{} \frac{-207}{6} &{} \frac{-67}{6} \\ 1004 &{} \frac{-1743}{2} &{} -1241 \end{bmatrix} \text{ and } C_1^{\prime } = \mathcal {B}(p(0,x_2), [0, 1])= \begin{bmatrix} 48&36&48 \end{bmatrix}; \end{aligned}$$
$$\begin{aligned} B_1^{\prime } = \begin{bmatrix} 48 &{} 36 &{} 48\\ -6 &{}\frac{-27}{8} &{} \frac{-57}{4} \\ \frac{-4}{3} &{} \frac{-9}{24} &{} \frac{-83}{12} \\ \frac{-140}{12} &{} \frac{-207}{24} &{} \frac{-67}{12} \\ 251 &{} \frac{-1743}{8} &{} \frac{-1241}{4} \end{bmatrix}. \end{aligned}$$

The Bernstein coefficients of p over u are obtained from

$$\begin{aligned} \mathcal {B}(p, {\textit{\textbf{u}}})= & {} H_1 H_2 H_3 H_4 B_1^{\prime } \\= & {} \begin{bmatrix} 1 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 1 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 1 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 1 &{} 0\\ 0 &{} 0 &{} 0 &{} 1 &{} 1 \end{bmatrix} \begin{bmatrix} 1 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 1 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 1 &{} 0 &{} 0\\ 0 &{} 0 &{} 1 &{} 1 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \end{bmatrix} \begin{bmatrix} 1 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 1 &{} 0 &{} 0 &{} 0\\ 0 &{} 1 &{} 1 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 1 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \end{bmatrix} \begin{bmatrix} 1 &{} 0 &{} 0 &{} 0 &{} 0\\ 1 &{} 1 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 1 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 1 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \end{bmatrix} \begin{bmatrix} 48 &{} 36 &{} 48 \\ -6 &{}\frac{-27}{8} &{} \frac{-57}{4} \\ \frac{-4}{3} &{} \frac{-9}{24} &{} \frac{-83}{12} \\ \frac{-140}{12} &{} \frac{-207}{24} &{} \frac{-67}{12} \\ 251 &{} \frac{-1743}{8} &{} \frac{-1241}{4} \end{bmatrix}\\= & {} \begin{bmatrix} 48 &{} 36 &{} 48 \\ 42 &{}\frac{261}{8} &{} \frac{135}{4} \\ \frac{122}{3} &{} \frac{774}{24} &{} \frac{322}{12} \\ 29 &{} \frac{567}{24} &{} \frac{255}{12} \\ 280 &{} \frac{483}{2} &{} -289 \end{bmatrix}. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Titi, J., Garloff, J. (2020). Symbolic-Numeric Computation of the Bernstein Coefficients of a Polynomial from Those of One of Its Partial Derivatives and of the Product of Two Polynomials. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60026-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60025-9

  • Online ISBN: 978-3-030-60026-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics