Skip to main content

A Portable Measurement System for Spatially-Varying Reflectance Using Two Handheld Cameras

  • Conference paper
  • First Online:
HCI International 2020 – Late Breaking Papers: Virtual and Augmented Reality (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12428))

Included in the following conference series:

  • 915 Accesses

Abstract

In this paper, we propose a system that can measure the spatially-varying reflectance of real materials. Our system uses two handheld cameras, a small LED light, a turning table, and a chessboard with markers. The two cameras are used as a view and light cameras respectively to acquire incoming and outgoing light directions simultaneously, and the brightness at each position on the target material. The reflectance is approximated by using the Ward BRDF (Bidirectional Reflectance Distribution Function) model. The normal directions and all model parameters at each position on the material are estimated by non-linear optimization. As the result of experiment, the normal directions for all spatial points were properly estimated, and the correct colors of rendered materials were reproduced. Also, highlight changes on the surfaces were observed when we moved the light source or the rendered materials. It was confirmed that our system was easy to use and was able to measure the spatially-varying reflectance of real materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aittala, M., Weyrich, T., Lehtinen, J.: Practical SVBRDF capture in the frequency domain. ACM Trans. Graph. 32(4) (2013). https://doi.org/10.1145/2461912.2461978

  2. Aittala, M., Weyrich, T., Lehtinen, J.: Two-shot SVBRDF capture for stationary materials. ACM Trans. Graph. 34(4) (2015). https://doi.org/10.1145/2766967

  3. Baribeau, R., Neil, W.S., Côté, E.: Development of a robot-based gonioreflectometer for spectral BRDF measurement. J. Mod. Opt. 56(13), 1497–1503 (2009). https://doi.org/10.1080/09500340903045702

  4. Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18(1), 1–34 (1999). https://doi.org/10.1145/300776.300778

  5. Dana, K.J., Wang, J.: Device for convenient measurement of spatially varying bidirectional reflectance. J. Opt. Soc. Am. A 21(1), 1–12 (2004). https://doi.org/10.1364/JOSAA.21.000001. http://josaa.osa.org/abstract.cfm?URI=josaa-21-1-1

  6. Dong, Y., et al.: Manifold bootstrapping for SVBRDF capture. ACM Trans. Graph. 29(4) (2010). https://doi.org/10.1145/1778765.1778835

  7. Fichet, A., Sato, I., Holzschuch, N.: Capturing spatially varying anisotropic reflectance parameters using Fourier analysis. In: Proceedings of the 42nd Graphics Interface Conference, GI 2016, pp. 65–73. Canadian Human-Computer Communications Society, School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada (2016). https://doi.org/10.20380/GI2016.09

  8. Filip, J., Vávra, R., Krupička, M.: Rapid material appearance acquisition using consumer hardware. Sensors (Basel, Switzerland) 14(10), 19785–19805 (2014). https://doi.org/10.3390/s141019785. https://pubmed.ncbi.nlm.nih.gov/25340451

  9. Foo, S.C.: A gonioreflectometer for measuring the bidirectional reflectance of material for use in illumination computation (1997)

    Google Scholar 

  10. Gardner, A., Tchou, C., Hawkins, T., Debevec, P.: Linear light source reflectometry. ACM Trans. Graph. 22(3), 749–758 (2003). https://doi.org/10.1145/882262.882342

  11. Garrido-Jurado, S., Muñoz Salinas, R., Madrid-Cuevas, F., Marín-Jiménez, M.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014). https://doi.org/10.1016/j.patcog.2014.01.005

  12. Li, B., Feng, J., Zhou, B.: A SVBRDF modeling pipeline using pixel clustering (2019)

    Google Scholar 

  13. Lyngby, R.A., Matthiassen, J.B., Frisvad, J.R., Dahl, A.B., Aanæs, H.: Using a robotic arm for measuring BRDFs. In: Felsberg, M., Forssén, P.-E., Sintorn, I.-M., Unger, J. (eds.) SCIA 2019. LNCS, vol. 11482, pp. 184–196. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20205-7_16

    Chapter  Google Scholar 

  14. Mcallister, D.K., Lastra, A.: A generalized surface appearance representation for computer graphics. Ph.D. thesis (2002). aAI3061704

    Google Scholar 

  15. Murray-Coleman, J., Smith, A.: The automated measurement of BRDFS and their application to luminaire modeling. J. Illum. Eng. Soc. 19(1), 87–99 (1990). https://doi.org/10.1080/00994480.1990.10747944

  16. Rump, M., Mueller, G., Sarlette, R., Koch, D., Klein, R.: Photo-realistic rendering of metallic car paint from image-based measurements. Comput. Graphics Forum 27(2), 527–536 (2008). https://doi.org/10.1111/j.1467-8659.2008.01150.x

  17. Tunwattanapong, B., et al.: Acquiring reflectance and shape from continuous spherical harmonic illumination. ACM Trans. Graph. 32(4) (2013). https://doi.org/10.1145/2461912.2461944

  18. Wang, J., Zhao, S., Tong, X., Snyder, J., Guo, B.: Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Trans. Graph. 27(3), 1–9 (2008). https://doi.org/10.1145/1360612.1360640

  19. Ward, G.J.: Measuring and modeling anisotropic reflection. SIGGRAPH Comput. Graph. 26(2), 265–272 (1992). https://doi.org/10.1145/142920.134078

  20. Yu, J., Xu, Z., Mannino, M., Jensen, H.W., Ramamoorthi, R.: Sparse sampling for image-based SVBRDF acquisition. In: Klein, R., Rushmeier, H. (eds.) Workshop on Material Appearance Modeling. The Eurographics Association (2016). https://doi.org/10.2312/mam.20161251

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zar Zar Tun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tun, Z.Z., Tsunezaki, S., Komuro, T., Yamamoto, S., Tsumura, N. (2020). A Portable Measurement System for Spatially-Varying Reflectance Using Two Handheld Cameras. In: Stephanidis, C., Chen, J.Y.C., Fragomeni, G. (eds) HCI International 2020 – Late Breaking Papers: Virtual and Augmented Reality. HCII 2020. Lecture Notes in Computer Science(), vol 12428. Springer, Cham. https://doi.org/10.1007/978-3-030-59990-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59990-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59989-8

  • Online ISBN: 978-3-030-59990-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics