Skip to main content

Deep Disentangled Hashing with Momentum Triplets for Neuroimage Search

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Neuroimaging has been widely used in computer-aided clinical diagnosis and treatment, and the rapid increase of neuroimage repositories introduces great challenges for efficient neuroimage search. Existing image search methods often use triplet loss to capture high-order relationships between samples. However, we find that the traditional triplet loss is difficult to pull positive and negative sample pairs to make their Hamming distance discrepancies larger than a small fixed value. This may reduce the discriminative ability of learned hash code and degrade the performance of image search. To address this issue, in this work, we propose a deep disentangled momentum hashing (DDMH) framework for neuroimage search. Specifically, we first investigate the original triplet loss and find that this loss function can be determined by the inner product of hash code pairs. Accordingly, we disentangle hash code norms and hash code directions and analyze the role of each part. By decoupling the loss function from the hash code norm, we propose a unique disentangled triplet loss, which can effectively push positive and negative sample pairs by desired Hamming distance discrepancies for hash codes with different lengths. We further develop a momentum triplet strategy to address the problem of insufficient triplet samples caused by small batch-size for 3D neuroimages. With the proposed disentangled triplet loss and the momentum triplet strategy, we design an end-to-end trainable deep hashing framework for neuroimage search. Comprehensive empirical evidence on three neuroimage datasets shows that DDMH has better performance in neuroimage search compared to several state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graham, R.N., Perriss, R., Scarsbrook, A.F.: DICOM demystified: a review of digital file formats and their use in radiological practice. Clin. Radiol. 60(11), 1133–1140 (2005)

    Article  Google Scholar 

  2. Grimson, W.E.L., Kikinis, R., Jolesz, F.A., Black, P.: Image-guided surgery. Sci. Am. 280(6), 54–61 (1999)

    Article  Google Scholar 

  3. Owais, M., Arsalan, M., Choi, J., Park, K.R.: Effective diagnosis and treatment through content-based medical image retrieval (CBMIR) by using artificial intelligence. J. Clin. Med. 8(4), 462 (2019)

    Article  Google Scholar 

  4. Cheng, B., Liu, M., Shen, D., Li, Z., Zhang, D.: Multi-domain transfer learning for early diagnosis of Alzheimer’s disease. Neuroinformatics 15(2), 115–132 (2017)

    Article  Google Scholar 

  5. Liu, M., Zhang, J., Adeli, E., Shen, D.: Landmark-based deep multi-instance learning for brain disease diagnosis. Med. Image Anal. 43, 157–168 (2018)

    Article  Google Scholar 

  6. Holt, A., Bichindaritz, I., Schmidt, R., Perner, P.: Medical applications in case-based reasoning. Knowl. Eng. Rev. 20(3), 289–292 (2005)

    Article  Google Scholar 

  7. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image search. In: ICCV, pp. 2130–2137 (2009)

    Google Scholar 

  8. Yang, E., Deng, C., Liu, W., Liu, X., Tao, D., Gao, X.: Pairwise relationship guided deep hashing for cross-modal retrieval. In: AAAI, pp. 1618–1625 (2017)

    Google Scholar 

  9. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing. IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1092–1104 (2012)

    Article  Google Scholar 

  10. Dai, B., Guo, R., Kumar, S., He, N., Song, L.: Stochastic generative hashing. arXiv preprint arXiv:1701.02815 (2017)

  11. Yang, E., Deng, C., Liu, T., Liu, W., Tao, D.: Semantic structure-based unsupervised deep hashing. IJCA I, 1064–1070 (2018)

    Google Scholar 

  12. Liu, W., Wang, J., Ji, R., Jiang, Y., Chang, S.F.: Supervised hashing with kernels. In: CVPR, pp. 2074–2081 (2012)

    Google Scholar 

  13. Gui, J., Liu, T., Sun, Z., Tao, D., Tan, T.: Fast supervised discrete hashing. IEEE Trans. Pattern Anal. Mach. Intell. 40(2), 490–496 (2017)

    Article  Google Scholar 

  14. Yang, E., Deng, C., Li, C., Liu, W., Li, J., Tao, D.: Shared predictive cross-modal deep quantization. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5292–5303 (2018)

    Article  Google Scholar 

  15. Cao, Y., Long, M., Liu, B., Wang, J., KLiss, M.: Deep Cauchy hashing for hamming space retrieval. In: CVPR, pp. 1229–1237 (2018)

    Google Scholar 

  16. Cao, Y., Liu, B., Long, M., Wang, J., KLiss, M.: HashGAN: deep learning to hash with pair conditional Wasserstein GAN. In: CVPR, pp. 1287–1296 (2018)

    Google Scholar 

  17. Zhang, R., Lin, L., Zhang, R., Zuo, W., Zhang, L.: Bit-scalable deep hashing with regularized similarity learning for image retrieval and person re-identification. IEEE Trans. Image Process. 24(12), 4766–4779 (2015)

    Article  MathSciNet  Google Scholar 

  18. Deng, C., Yang, E., Liu, T., Li, J., Liu, W., Tao, D.: Unsupervised semantic-preserving adversarial hashing for image search. IEEE Trans. Image Process. 28(8), 4032–4044 (2019)

    Article  MathSciNet  Google Scholar 

  19. Deng, C., Chen, Z., Liu, X., Gao, X., Tao, D.: Triplet-based deep hashing network for cross-modal retrieval. IEEE Trans. Image Process. 27(8), 3893–3903 (2018)

    Article  MathSciNet  Google Scholar 

  20. Chen, L., Honeine, P., Qu, H., Zhao, J., Sun, X.: Correntropy-based robust multilayer extreme learning machines. Pattern Recogn. 84, 357–370 (2018)

    Article  Google Scholar 

  21. Chen, L., Qu, H., Zhao, J., Chen, B., Principe, J.C.: Efficient and robust deep learning with correntropy-induced loss function. Neural Comput. Appl. 27(4), 1019–1031 (2016)

    Article  Google Scholar 

  22. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR, pp. 815–823 (2015)

    Google Scholar 

  23. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)

  24. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: CVPR, pp. 4690–4699 (2019)

    Google Scholar 

  25. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: CVPR, pp. 5265–5274 (2018)

    Google Scholar 

  26. Chen, Z., Cai, R., Lu, J., Feng, J., Zhou, J.: Order-sensitive deep hashing for multimorbidity medical image retrieval. In: Frangi, A., Schnabel, J., Davatzikos, C., Alberola-Lopez, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_70

    Chapter  Google Scholar 

  27. Li, Q., Sun, Z., He, R., Tan, T.: Deep supervised discrete hashing. In: NeurIPS,pp. 2482–2491 (2017)

    Google Scholar 

  28. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. arXiv preprint arXiv:1911.05722 (2019)

  29. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR (2014)

    Google Scholar 

  30. Jack Jr, C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging Offic. J. Int. Soc. Magn. Reson. Med. 27(4), 685–691 (2008)

    Google Scholar 

  31. Ellis, K.A., et al.: The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int. Psychogeriatr. 21(4), 672–687 (2009)

    Article  Google Scholar 

  32. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NeurIPS, pp. 1753–1760 (2009)

    Google Scholar 

  33. Heo, J.P., Lee, Y., He, J., Chang, S.F., Yoon, S.E.: Spherical hashing. In: CVPR, pp. 2957–2964 (2012)

    Google Scholar 

  34. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2013)

    Article  Google Scholar 

  35. Jin, Z., Li, C., Lin, Y., Cai, D.: Density sensitive hashing. IEEE Trans. Cybern. 44(8), 1362–1371 (2014)

    Article  Google Scholar 

  36. Li, W.J., Wang, S., Kang, W.C.: Feature learning based deep supervised hashing with pairwise labels. IJCA I, 1711–1717 (2016)

    Google Scholar 

  37. Yang, H.F., Lin, K., Chen, C.S.: Supervised learning of semantics-preserving hash via deep convolutional neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 40(2), 437–451 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by NIH grants (Nos. AG041721, AG053867).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxia Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, E. et al. (2020). Deep Disentangled Hashing with Momentum Triplets for Neuroimage Search. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12261. Springer, Cham. https://doi.org/10.1007/978-3-030-59710-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59710-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59709-2

  • Online ISBN: 978-3-030-59710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics