Skip to main content

Blood Transfusion and Traumatic Brain Injury

  • Chapter
  • First Online:
Essentials of Blood Product Management in Anesthesia Practice

Abstract

Traumatic brain injury (TBI) is an acquired sudden injury secondary to blunt or penetrating mechanisms to the brain that disrupts its normal functioning. TBI can cause serious physical, cognitive, and psychosocial disabilities for the patient and cost for families and the health care system; the Center for Disease Control and Prevention (CDC) estimated that in 2010, 2.5 million suffered from TBI and accounted for 87% of visits to the emergency department, 11% of hospitalizations and 2% of deaths. Estimates show that 3.2–5.3 million persons have a TBI-related disability in the United States [1]. TBI is such complex health public issue that the US government has created the constitutional tools to be confronted. The Traumatic Brain Injury Act of 2008 authorized research and public health activities associated to TBI [2]. Studies performed in the United States before 2006 showed an incidence of TBI around 140/100,000 persons [3]. In 2003, Rutland-Brown et al. reported a mortality of 17.5/100,000 per year secondary to TBI [4]. During the period 1997–2007 approximately 580,000 persons died due to TBI in the United States [5]. All age groups are affected. TBI is a major cause of disability and death especially in the young adult population [6]. Mortality is higher in patients older than 65 years, in whom TBI is mostly related to falls [7, 8]. Men are more frequently affected than women. The majority of deaths are caused by motor vehicle accidents, suicides and falls [5]. TBI can occur as an isolated injury or associated with trauma to other areas of the body. It is classified as mild, moderate and severe depending on the mechanism of injury, clinical signs and symptoms. The clinical assessment of TBI patients includes the Glasgow Coma Score and radiographic data. The scale assigns values 1–5 according to clinical responses including eye opening, motor response and verbal response. Scores 13–15 points correlate to mild, 9–12 points moderate and <8 points severe brain injury [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selassie AW, et al. Incidence of long-term disability following traumatic brain injury hospitalization, United States, 2003. J Head Trauma Rehabil. 2008;23(2):123–31.

    Article  PubMed  Google Scholar 

  2. Zaloshnja E, et al. Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. J Head Trauma Rehabil. 2008;23(6):394–400.

    Article  PubMed  Google Scholar 

  3. George W. Rutherford, MD et. al. Epidemiology of adult traumatic brain injury. Institute of Medicine Committee on Gulf, W., V. Health: brain injury in, and O. long-term health. In: Gulf war and health: long-term consequences of traumatic brain injury. Vol. 7. Washington, DC: National Academies Press (US); 2008.

    Google Scholar 

  4. Rutland-Brown W, et al. Incidence of traumatic brain injury in the United States, 2003. J Head Trauma Rehabil. 2006;21(6):544–8.

    Article  PubMed  Google Scholar 

  5. Coronado VG, et al. Surveillance for traumatic brain injury-related deaths--United States, 1997–2007. MMWR Surveill Summ. 2011;60(5):1–32.

    PubMed  Google Scholar 

  6. Faul MC, V. Handbook of clinical neurology. Vol. 127. 2015. Elsevier. Amsterdam, Netherlands.

    Google Scholar 

  7. Mak CHK, et al. Traumatic brain injury in the elderly: is it as bad as we think? Curr Transl Geriatr Exp Gerontol Rep. 2012;1(3):171–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Thompson HJ, McCormick WC, Kagan SH. Traumatic brain injury in older adults: epidemiology, outcomes, and future implications. J Am Geriatr Soc. 2006;54(10):1590–5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moppett IK. Traumatic brain injury: assessment, resuscitation and early management. Br J Anaesth. 2007;99(1):18–31.

    Article  CAS  PubMed  Google Scholar 

  10. Sulhan S, et al. Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: pathophysiology and potential therapeutic targets. J Neurosci Res. 2020;98(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  11. Prins M, et al. The pathophysiology of traumatic brain injury at a glance. Dis Model Mech. 2013;6(6):1307–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang-Schomer MD, et al. Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J. 2010;24(5):1401–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kinoshita K. Traumatic brain injury: pathophysiology for neurocritical care. J Intensive Care. 2016;4:29.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ladak AA, Enam SA, Ibrahim MT. A review of the molecular mechanisms of traumatic brain injury. World Neurosurg. 2019;131:126–32.

    Article  PubMed  Google Scholar 

  15. Carney N, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6–15.

    Article  PubMed  Google Scholar 

  16. Laroche M, et al. Coagulopathy after traumatic brain injury. Neurosurgery. 2012;70(6):1334–45.

    Article  PubMed  Google Scholar 

  17. Chhabra G, et al. Hypofibrinogenemia in isolated traumatic brain injury in Indian patients. Neurol India. 2010;58(5):756–7.

    Article  PubMed  Google Scholar 

  18. Shehata M, Afify MI, El-Shafie M, Khaled M. Prevalence and clinical implications of coagulopathy in patients with isolated head trauma. Med J Cairo Univ. 2011;79:131–7.

    Google Scholar 

  19. Hoyt DB. A clinical review of bleeding dilemmas in trauma. Semin Hematol. 2004;41(1 Suppl 1):40–3.

    Article  PubMed  CAS  Google Scholar 

  20. Harhangi BS, et al. Coagulation disorders after traumatic brain injury. Acta Neurochir. 2008;150(2):165–75; discussion 175.

    Article  CAS  PubMed  Google Scholar 

  21. Gomez PA, et al. Mild head injury: differences in prognosis among patients with a Glasgow Coma Scale score of 13 to 15 and analysis of factors associated with abnormal CT findings. Br J Neurosurg. 1996;10(5):453–60.

    Article  CAS  PubMed  Google Scholar 

  22. Shrestha A, Joshi RM, Devkota UP. Contributing factors for coagulopathy in traumatic brain injury. Asian J Neurosurg. 2017;12(4):648–52.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Epstein DS, et al. Acute traumatic coagulopathy in the setting of isolated traumatic brain injury: a systematic review and meta-analysis. Injury. 2014;45(5):819–24.

    Article  PubMed  Google Scholar 

  24. Podolsky-Gondim GG, et al. The role of coagulopathy on clinical outcome following traumatic brain injury in children: analysis of 66 consecutive cases in a single center institution. Childs Nerv Syst. 2018;34(12):2455–61.

    Article  PubMed  Google Scholar 

  25. Stolla M, et al. Current state of transfusion in traumatic brain injury and associated coagulopathy. Transfusion. 2019;59(S2):1522–8.

    Article  PubMed  Google Scholar 

  26. Martin G, et al. Relationship of coagulopathy and platelet dysfunction to transfusion needs after traumatic brain injury. Neurocrit Care. 2018;28(3):330–7.

    Article  PubMed  Google Scholar 

  27. Albert V, et al. Early posttraumatic changes in coagulation and fibrinolysis systems in isolated severe traumatic brain injury patients and its influence on immediate outcome. Hematol Oncol Stem Cell Ther. 2019;12(1):32–43.

    Article  CAS  PubMed  Google Scholar 

  28. Samuels JM, et al. Severe traumatic brain injury is associated with a unique coagulopathy phenotype. J Trauma Acute Care Surg. 2019;86(4):686–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maegele M, et al. Coagulopathy and haemorrhagic progression in traumatic brain injury: advances in mechanisms, diagnosis, and management. Lancet Neurol. 2017;16(8):630–47.

    Article  PubMed  Google Scholar 

  30. Epstein DS, et al. Acute traumatic coagulopathy in the setting of isolated traumatic brain injury: definition, incidence and outcomes. Br J Neurosurg. 2015;29(1):118–22.

    Article  PubMed  Google Scholar 

  31. Wafaisade A, et al. Acute coagulopathy in isolated blunt traumatic brain injury. Neurocrit Care. 2010;12(2):211–9.

    Article  PubMed  Google Scholar 

  32. Talving P, et al. Coagulopathy in severe traumatic brain injury: a prospective study. J Trauma. 2009;66(1):55–61; discussion 61–2.

    PubMed  Google Scholar 

  33. Lustenberger T, et al. Early coagulopathy after isolated severe traumatic brain injury: relationship with hypoperfusion challenged. J Trauma. 2010;69(6):1410–4.

    PubMed  Google Scholar 

  34. Alexiou GA, et al. Admission glucose and coagulopathy occurrence in patients with traumatic brain injury. Brain Inj. 2014;28(4):438–41.

    Article  PubMed  Google Scholar 

  35. Corbett JM, Ho KM, Honeybul S. Prognostic significance of abnormal hematological parameters in severe traumatic brain injury requiring decompressive craniectomy. J Neurosurg. 2019:1–7.

    Google Scholar 

  36. Epstein DS, et al. Normalization of coagulopathy is associated with improved outcome after isolated traumatic brain injury. J Clin Neurosci. 2016;29:64–9.

    Article  PubMed  Google Scholar 

  37. Xia ZY, et al. Effects of hemoglobin level on the early postsurgical cerebral metabolism in patients with severe traumatic brain injury. Brain Inj. 2017;31(5):697–701.

    Article  PubMed  Google Scholar 

  38. Sekhon MS, et al. Association of hemoglobin concentration and mortality in critically ill patients with severe traumatic brain injury. Crit Care. 2012;16(4):R128.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Litofsky NS, et al. The negative impact of anemia in outcome from traumatic brain injury. World Neurosurg. 2016;90:82–90.

    Article  PubMed  Google Scholar 

  40. Duane TM, et al. The effect of anemia and blood transfusions on mortality in closed head injury patients. J Surg Res. 2008;147(2):163–7.

    Article  PubMed  Google Scholar 

  41. Griesdale DE, et al. Hemoglobin area and time index above 90 g/L are associated with improved 6-month functional outcomes in patients with severe traumatic brain injury. Neurocrit Care. 2015;23(1):78–84.

    Article  CAS  PubMed  Google Scholar 

  42. Yang CJ, et al. The association between anemia and the mortality of severe traumatic brain injury in emergency department. J Trauma. 2011;71(6):E132–5.

    PubMed  Google Scholar 

  43. Oddo M, et al. Anemia and brain oxygen after severe traumatic brain injury. Intensive Care Med. 2012;38(9):1497–504.

    Article  CAS  PubMed  Google Scholar 

  44. Salim A, et al. Role of anemia in traumatic brain injury. J Am Coll Surg. 2008;207(3):398–406.

    Article  PubMed  Google Scholar 

  45. Boutin A, et al. Transfusion of red blood cells in patients with traumatic brain injuries admitted to Canadian trauma health centres: a multicentre cohort study. BMJ Open. 2017;7(3):e014472.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Moman RN, et al. Red blood cell transfusion in acute brain injury subtypes: an observational cohort study. J Crit Care. 2019;50:44–9.

    Article  PubMed  Google Scholar 

  47. Leal-Noval SR, et al. Effects of red blood cell transfusion on long-term disability of patients with traumatic brain injury. Neurocrit Care. 2016;24(3):371–80.

    Article  CAS  PubMed  Google Scholar 

  48. Warner MA, et al. Transfusions and long-term functional outcomes in traumatic brain injury. J Neurosurg. 2010;113(3):539–46.

    Article  CAS  PubMed  Google Scholar 

  49. Boutin A, et al. Hemoglobin thresholds and red blood cell transfusion in adult patients with moderate or severe traumatic brain injuries: a retrospective cohort study. J Crit Care. 2018;45:133–9.

    Article  PubMed  Google Scholar 

  50. Elterman J, et al. Transfusion of red blood cells in patients with a prehospital Glasgow Coma Scale score of 8 or less and no evidence of shock is associated with worse outcomes. J Trauma Acute Care Surg. 2013;75(1):8–14; discussion 14.

    Article  PubMed  Google Scholar 

  51. Badenes R, et al. Hemoglobin concentrations and RBC transfusion thresholds in patients with acute brain injury: an international survey. Crit Care. 2017;21(1):159.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lessard Bonaventure P, et al. Red blood cell transfusion in critically ill patients with traumatic brain injury: an international survey of physicians’ attitudes. Can J Anaesth. 2019;66(9):1038–48.

    Article  PubMed  Google Scholar 

  53. Sena MJ, et al. Transfusion practices for acute traumatic brain injury: a survey of physicians at US trauma centers. Intensive Care Med. 2009;35(3):480–8.

    Article  PubMed  Google Scholar 

  54. Carson JL, et al. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst Rev. 2016;10:Cd002042.

    PubMed  Google Scholar 

  55. Robertson CS, et al. Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial. JAMA. 2014;312(1):36–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Vedantam A, et al. Progressive hemorrhagic injury after severe traumatic brain injury: effect of hemoglobin transfusion thresholds. J Neurosurg. 2016;125(5):1229–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McIntyre LA, et al. Effect of a liberal versus restrictive transfusion strategy on mortality in patients with moderate to severe head injury. Neurocrit Care. 2006;5(1):4–9.

    Article  PubMed  Google Scholar 

  58. Carr KR, et al. Association between relative anemia and early functional recovery after severe traumatic brain injury (TBI). Neurocrit Care. 2016;25(2):185–92.

    Article  PubMed  Google Scholar 

  59. Yamal JM, et al. Association of transfusion red blood cell storage age and blood oxygenation, long-term neurologic outcome, and mortality in traumatic brain injury. J Trauma Acute Care Surg. 2015;79(5):843–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ruel-Laliberte J, et al. Effect of age of transfused red blood cells on neurologic outcome following traumatic brain injury (ABLE-tbi Study): a nested study of the Age of Blood Evaluation (ABLE) trial. Can J Anaesth. 2019;66(6):696–705.

    Article  PubMed  Google Scholar 

  61. Dutzmann S, et al. On the value of routine prothrombin time screening in elective neurosurgical procedures. Neurosurg Focus. 2012;33(5):E9.

    Article  PubMed  Google Scholar 

  62. West KL, Adamson C, Hoffman M. Prophylactic correction of the international normalized ratio in neurosurgery: a brief review of a brief literature. J Neurosurg. 2011;114(1):9–18.

    Article  PubMed  Google Scholar 

  63. American Society of Anesthesiologists Task Force on Perioperative Blood, M. Practice guidelines for perioperative blood management: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management*. Anesthesiology. 2015;122(2):241–75.

    Article  Google Scholar 

  64. Kozek-Langenecker SA, et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol. 2013;30(6):270–382.

    Article  PubMed  Google Scholar 

  65. Anglin CO, et al. Effects of platelet and plasma transfusion on outcome in traumatic brain injury patients with moderate bleeding diatheses. J Neurosurg. 2013;118(3):676–86.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang LM, et al. Increased transfusion of fresh frozen plasma is associated with mortality or worse functional outcomes after severe traumatic brain injury: a retrospective study. World Neurosurg. 2017;104:381–9.

    Article  PubMed  Google Scholar 

  67. Leeper CM, et al. Overresuscitation with plasma is associated with sustained fibrinolysis shutdown and death in pediatric traumatic brain injury. J Trauma Acute Care Surg. 2018;85(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  68. Wohlauer MV, et al. Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. J Am Coll Surg. 2012;214(5):739–46.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Davis PK, et al. Platelet dysfunction is an early marker for traumatic brain injury-induced coagulopathy. Neurocrit Care. 2013;18(2):201–8.

    Article  CAS  PubMed  Google Scholar 

  70. Castellino FJ, et al. Traumatic brain injury causes platelet adenosine diphosphate and arachidonic acid receptor inhibition independent of hemorrhagic shock in humans and rats. J Trauma Acute Care Surg. 2014;76(5):1169–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guillotte AR, et al. Effects of platelet dysfunction and platelet transfusion on outcomes in traumatic brain injury patients. Brain Inj. 2018;32(13–14):1849–57.

    Article  PubMed  Google Scholar 

  72. Furay E, et al. Goal-directed platelet transfusions correct platelet dysfunction and may improve survival in patients with severe traumatic brain injury. J Trauma Acute Care Surg. 2018;85(5):881–7.

    Article  CAS  PubMed  Google Scholar 

  73. Practice parameter for the use of fresh-frozen plasma, cryoprecipitate, and platelets. Fresh-Frozen Plasma, Cryoprecipitate, and Platelets Administration Practice Guidelines Development Task Force of the College of American Pathologists. JAMA. 1994;271(10):777–81.

    Google Scholar 

  74. Estcourt LJ, et al. Guidelines for the use of platelet transfusions. Br J Haematol. 2017;176(3):365–94.

    Article  PubMed  Google Scholar 

  75. Goobie SM, Haas T. Bleeding management for pediatric craniotomies and craniofacial surgery. Paediatr Anaesth. 2014;24(7):678–89.

    Article  PubMed  Google Scholar 

  76. Chan KH, Mann KS, Chan TK. The significance of thrombocytopenia in the development of postoperative intracranial hematoma. J Neurosurg. 1989;71(1):38–41.

    Article  CAS  PubMed  Google Scholar 

  77. Downey DM, et al. Does platelet administration affect mortality in elderly head-injured patients taking antiplatelet medications? Am Surg. 2009;75(11):1100–3.

    Article  PubMed  Google Scholar 

  78. Bachelani AM, et al. Assessment of platelet transfusion for reversal of aspirin after traumatic brain injury. Surgery. 2011;150(4):836–43.

    Article  PubMed  Google Scholar 

  79. Briggs A, et al. Platelet dysfunction and platelet transfusion in traumatic brain injury. J Surg Res. 2015;193(2):802–6.

    Article  CAS  PubMed  Google Scholar 

  80. Holzmacher JL, et al. Platelet transfusion does not improve outcomes in patients with brain injury on antiplatelet therapy. Brain Inj. 2018;32(3):325–30.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jehan F, et al. Is there a need for platelet transfusion after traumatic brain injury in patients on P2Y12 inhibitors? J Surg Res. 2019;236:224–9.

    Article  PubMed  Google Scholar 

  82. Leong LB, David TK. Is platelet transfusion effective in patients taking antiplatelet agents who suffer an intracranial hemorrhage? J Emerg Med. 2015;49(4):561–72.

    Article  PubMed  Google Scholar 

  83. Jokar TO, et al. Ratio-based resuscitation in trauma patients with traumatic brain injury: is there a similar effect? Am Surg. 2016;82(3):271–7.

    Article  PubMed  Google Scholar 

  84. Wong H, Curry N, Stanworth SJ. Blood products and procoagulants in traumatic bleeding: use and evidence. Curr Opin Crit Care. 2016;22(6):598–606.

    Article  PubMed  Google Scholar 

  85. Shibahashi K, et al. Initial results of empirical cryoprecipitate transfusion in the treatment of isolated severe traumatic brain injury: use of in-house-produced cryoprecipitate. Neurol Med Chir (Tokyo). 2019;59(10):371–8.

    Article  Google Scholar 

  86. Kozek-Langenecker SA, et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology: first update 2016. Eur J Anaesthesiol. 2017;34(6):332–95.

    Article  PubMed  Google Scholar 

  87. New HV, et al. Guidelines on transfusion for fetuses, neonates and older children. Br J Haematol. 2016;175(5):784–828.

    Article  PubMed  Google Scholar 

  88. Shakur H, et al. Antifibrinolytic drugs for treating primary postpartum haemorrhage. Cochrane Database Syst Rev. 2018;2:Cd012964.

    PubMed  Google Scholar 

  89. Weng S, et al. Effect of tranexamic acid in patients with traumatic brain injury: a systematic review and meta-analysis. World Neurosurg. 2019;123:128–35.

    Article  PubMed  Google Scholar 

  90. Sandri A, et al. Perioperative intravenous tranexamic acid reduces blood transfusion in primary cementless total hip arthroplasty. Acta Biomed. 2019;90(1-s):81–6.

    CAS  PubMed  Google Scholar 

  91. Haghighi M, et al. Does tranexamic acid reduce bleeding during femoral fracture operation? Arch Bone Jt Surg. 2017;5(2):103–8.

    PubMed  PubMed Central  Google Scholar 

  92. Wang Y, Liu S, He L. Prophylactic use of tranexamic acid reduces blood loss and transfusion requirements in patients undergoing cesarean section: a meta-analysis. J Obstet Gynaecol Res. 2019;45(8):1562–75.

    Article  CAS  PubMed  Google Scholar 

  93. Roberts I, et al. The CRASH-2 trial: a randomised controlled trial and economic evaluation of the effects of tranexamic acid on death, vascular occlusive events and transfusion requirement in bleeding trauma patients. Health Technol Assess. 2013;17(10):1–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Perel P, et al. CRASH-2 (Clinical Randomisation of an Antifibrinolytic in Significant Haemorrhage) intracranial bleeding study: the effect of tranexamic acid in traumatic brain injury--a nested randomised, placebo-controlled trial. Health Technol Assess. 2012;16(13):iii–xii, 1–54.

    Article  CAS  PubMed  Google Scholar 

  95. Roberts I, et al. Tranexamic acid for significant traumatic brain injury (The CRASH-3 trial): statistical analysis plan for an international, randomised, double-blind, placebo-controlled trial. Wellcome Open Res. 2018;3:86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sprigg N, et al. Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial. Lancet. 2018;391(10135):2107–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mahmood A, Roberts I, Shakur H. A nested mechanistic sub-study into the effect of tranexamic acid versus placebo on intracranial haemorrhage and cerebral ischaemia in isolated traumatic brain injury: study protocol for a randomised controlled trial (CRASH-3 Trial Intracranial Bleeding Mechanistic Sub-Study [CRASH-3 IBMS]). Trials. 2017;18(1):330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Morte D, et al. Tranexamic acid administration following head trauma in a combat setting: does tranexamic acid result in improved neurologic outcomes? J Trauma Acute Care Surg. 2019;87(1):125–9.

    Article  CAS  PubMed  Google Scholar 

  99. Ebrahimi P, et al. Intravenous tranexamic acid for subdural and epidural intracranial hemorrhage: randomized, double-blind, placebo-controlled trial. Rev Recent Clin Trials. 2019;14(4):286–91.

    Article  CAS  PubMed  Google Scholar 

  100. Lombardo S, et al. Factor VIIa administration in traumatic brain injury: an AAST-MITC propensity score analysis. Trauma Surg Acute Care Open. 2018;3(1):e000134.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose V. Montoya-Gacharna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montoya-Gacharna, J.V., Kendale, S. (2021). Blood Transfusion and Traumatic Brain Injury. In: Scher, C.S., Kaye, A.D., Liu, H., Perelman, S., Leavitt, S. (eds) Essentials of Blood Product Management in Anesthesia Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-59295-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59295-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59294-3

  • Online ISBN: 978-3-030-59295-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics