Skip to main content

Blood Management in the Liver Transplant Patient

  • Chapter
  • First Online:
Essentials of Blood Product Management in Anesthesia Practice

Abstract

Hemostatic management for liver transplantation requires understanding the changes in physiology and coagulation status of patients with end stage liver disease. In addition, it requires anticipation of the surgical stages and their hemodynamic and metabolic effects. Although standard laboratory testing may indicate a bleeding risk, clinical evidence and point of care viscoelastic testing show that a balanced decrease in synthesis of pro- and anti-coagulant factors in patients with end stage liver disease generally results in a state of relative homeostasis termed “rebalanced hemostasis.” However, this balance is fragile and places patients at risk of developing either hypo- or hyper-coagulable states which may lead to bleeding or thrombosis. Anatomical complexity secondary to portal hypertension also contributes to the increased risk of hemorrhage during transplant. Several different products and blood management techniques may be useful to help control commonly faced hemostatic problems during liver transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wada H, Usui M, Sakuragawa N. Hemostatic abnormalities and liver diseases. Semin Thromb Hemost. 2008;34(8):772–8. https://doi.org/10.1055/s-0029-1145259.

    Article  CAS  PubMed  Google Scholar 

  2. Hartmann M, Szalai C, Saner FH. Hemostasis in liver transplantation: pathophysiology, monitoring, and treatment. World J Gastroenterol. 2016;22(4):1541–50. https://doi.org/10.3748/wjg.v22.i4.1541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hugenholtz GCG, Adelmeijer J, Meijers JCM, Porte RJ, Stravitz RT, Lisman T. An unbalance between von Willebrand factor and ADAMTS13 in acute liver failure: implications for hemostasis and clinical outcome. Hepatology. 2013;58(2):752–61. https://doi.org/10.1002/hep.26372.

    Article  CAS  PubMed  Google Scholar 

  4. Lisman T, Bongers TN, Adelmeijer J, et al. Elevated levels of von Willebrand factor in cirrhosis support platelet adhesion despite reduced functional capacity. Hepatology. 2006;44(1):53–61. https://doi.org/10.1002/hep.21231.

    Article  CAS  PubMed  Google Scholar 

  5. Lisman T, Porte RJ. Rebalanced hemostasis in patients with liver disease: evidence and clinical consequences. Blood. 2010;116(6):878–85. https://doi.org/10.1182/blood-2010-02-261891.

    Article  CAS  PubMed  Google Scholar 

  6. Saner FH, Kirchner C. Monitoring and treatment of coagulation disorders in end-stage liver disease. Visc Med. 2016;32(4):241–8. https://doi.org/10.1159/000446304.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Warner MA, Hanson AC, Weister TJ, et al. Changes in international normalized ratios after plasma transfusion of varying doses in unique clinical environments. Anesth Analg. 2018;127(2):349–57. https://doi.org/10.1213/ANE.0000000000003336.

    Article  PubMed  Google Scholar 

  8. Williams B, McNeil J, Crabbe A, Tanaka KA. Practical use of thromboelastometry in the management of perioperative coagulopathy and bleeding. Transfus Med Rev. 2017;31(1):11–25. https://doi.org/10.1016/j.tmrv.2016.08.005.

    Article  PubMed  Google Scholar 

  9. Katz D, Beilin Y. Disorders of coagulation in pregnancy. Br J Anaesth. 2015;115 Suppl 2:ii75-88. doi: 10.1093/bja/aev374

    Google Scholar 

  10. Hashir A, Singh S, Krishnan G, Subramanian RGS. Correlation of early ROTEM parameters with conventional coagulation tests in patients with chronic liver disease undergoing liver transplant. Indian J Anesth. 2017;61(18):622–8. https://doi.org/10.4103/ija.IJA.

    Article  Google Scholar 

  11. Pierce A, Pittet J-F. Practical understanding of hemostasis and approach to the bleeding patient in the OR. Adv Anesth. 2014;32(1):1–21. https://doi.org/10.1002/ana.22528.Toll-like.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wikkelsø A, Wetterslev J, Møller AM, Afshari A. Thromboelastography (TEG) or rotational thromboelastometry (ROTEM) to monitor haemostatic treatment in bleeding patients: A systematic review with meta-analysis and trial sequential analysis. Anaesthesia. 2017;72(4):519–31. https://doi.org/10.1111/anae.13765.

    Article  PubMed  Google Scholar 

  13. Smart L, Mumtaz K, Scharpf D, et al. Rotational thromboelastometry or conventional coagulation tests in liver transplantation: comparing blood loss, transfusions, and cost. Ann Hepatol. 2017;16(6):916–23. https://doi.org/10.5604/01.3001.0010.5283.

    Article  PubMed  Google Scholar 

  14. Roullet S, Freyburger G, Cruc M, et al. Management of bleeding and transfusion during liver transplantation before and after the introduction of a rotational thromboelastometry-based algorithm. Liver Transplant. 2015;21(2):169–79. https://doi.org/10.1002/lt.24030.

    Article  Google Scholar 

  15. Northup P, Reutemann B. Management of coagulation and anticoagulation in liver transplantation candidates. Liver Transplant. 2018;24(8):1119–32. https://doi.org/10.1002/lt.25198.

    Article  Google Scholar 

  16. Tafur LA, Taura P, Blasi A, et al. Rotation thromboelastometry velocity curve predicts blood loss during liver transplantation. Br J Anaesth. 2016;117(6):741–8. https://doi.org/10.1093/bja/aew344.

    Article  CAS  PubMed  Google Scholar 

  17. Dötsch TM, Dirkmann D, Bezinover D, et al. Assessment of standard laboratory tests and rotational thromboelastometry for the prediction of postoperative bleeding in liver transplantation. Br J Anaesth. 2017;119(3):402–10. https://doi.org/10.1093/bja/aex122.

    Article  CAS  PubMed  Google Scholar 

  18. Álamo JM, León A, Mellado P, et al. Is “intra-operating room” thromboelastometry useful in liver transplantation? A case-control study in 303 patients. Transplant Proc. 2013;45(10):3637–9. https://doi.org/10.1016/j.transproceed.2013.11.008.

    Article  PubMed  Google Scholar 

  19. Marroni CA, De Medeiros FA, Fernandes SA, et al. Liver transplantation and alcoholic liver disease: history, controversies, and considerations. World J Gastroenterol. 2018;24(26):2785–805. https://doi.org/10.3748/wjg.v24.i26.2785.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zanetto A, Campello E, Spiezia L, Burra P, Simioni P, Russo FP. Cancer-associated thrombosis in cirrhotic patients with hepatocellular carcinoma. Cancers (Basel). 2018;10(11):1–19. https://doi.org/10.3390/cancers10110450.

    Article  CAS  Google Scholar 

  21. Rodríguez-Castro KI, Porte RJ, Nadal E, Germani G, Burra P, Senzolo M. Management of nonneoplastic portal vein thrombosis in the setting of liver transplantation: a systematic review. Transplantation. 2012;94(11):1145–53. https://doi.org/10.1097/TP.0b013e31826e8e53.

    Article  PubMed  Google Scholar 

  22. Amitrano L, Guardascione MA, Ames PRJ. Coagulation abnormalities in cirrhotic patients with portal vein thrombosis. Clin Lab. 2007;53(11–12):583–9.

    PubMed  Google Scholar 

  23. Agarwal B, Shaw S, Hari MS, Burroughs AK, Davenport A. Continuous renal replacement therapy (CRRT) in patients with liver disease: is circuit life different? J Hepatol. 2009;51(3):504–9. https://doi.org/10.1016/j.jhep.2009.05.028.

    Article  PubMed  Google Scholar 

  24. Cleland S, Corredor C, Ye JJ, Srinivas C, McCluskey SA. Massive haemorrhage in liver transplantation: consequences, prediction and management. World J Transplant. 2016;6(2):291. https://doi.org/10.5500/wjt.v6.i2.291.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Segal H, Cottam S, Potter D, Hunt BJ. Coagulation and fibrinolysis in primary biliary cirrhosis compared with other liver disease and during orthotopic liver transplantation. Hepatology. 1997;25(3):683–8. https://doi.org/10.1002/hep.510250332.

    Article  CAS  PubMed  Google Scholar 

  26. Schroeder RA, Collins BH, Tuttle-Newhall E, et al. Intraoperative fluid management during orthotopic liver transplantation. J Cardiothorac Vasc Anesth. 2004;18(4):438–41. https://doi.org/10.1053/j.jvca.2004.05.020.

    Article  PubMed  Google Scholar 

  27. Feng ZY, Xu X, Zhu SM, Bein B, Zheng S. Sen. Effects of low central venous pressure during preanhepatic phase on blood loss and liver and renal function in liver transplantation. World J Surg. 2010;34(8):1864–73. https://doi.org/10.1007/s00268-010-0544-y.

    Article  PubMed  Google Scholar 

  28. Sakai T. Liver Transplantation Anesthesiology. In: KST S, editor. Anesthesia and Perioperative Care for Organ Transplantation. New York: Springer Science+Business Media; 2017. p. 353–64. https://doi.org/10.1213/ane.0000000000002483.

    Chapter  Google Scholar 

  29. Kong HY, Huang SQ, Zhu SM, Wen XH. Role of anhepatic time in endothelial-related coagulation in liver transplantation. Minerva Anestesiol. 2013;79(4):391–7.

    CAS  PubMed  Google Scholar 

  30. De Boer MT, Molenaar IQ, Hendriks HGD, Slooff MJH, Porte RJ. Minimizing blood loss in liver transplantation: progress through research and evolution of techniques. Dig Surg. 2005;22(4):265–75. https://doi.org/10.1159/000088056.

    Article  PubMed  Google Scholar 

  31. Kettner SC, Gonano C, Seebach F, et al. Endogenous heparin-like substances significantly impair coagulation in undergoing orthotopic liver transplantation. Anesth Analg. 1998;86(4):691–5. https://doi.org/10.1097/00000539-199804000-00002.

    Article  CAS  PubMed  Google Scholar 

  32. Bayly PJM, Thick M. Reversal of post-reperfusion coagulopathy by protamine sulphate in orthotopic liver transplantation. Br J Anaesth. 1994;73(6):840–2. https://doi.org/10.1093/bja/73.6.840.

    Article  CAS  PubMed  Google Scholar 

  33. Donohue CI. Reducing transfusion requirements in liver transplantation. World J Transplant. 2015;5(4):165. https://doi.org/10.5500/wjt.v5.i4.165.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ozier Y, Pessione F, Samain E, et al. Institutional variability in transfusion practice for liver transplantation. Anesth Analg. 2003;97(3):671–9. https://doi.org/10.1213/01.ANE.0000073354.38695.7C.

    Article  PubMed  Google Scholar 

  35. Findlay JY, Rettke SR. Poor prediction of blood transfusion requirements in adult liver transplantations from preoperative variables. J Clin Anesth. 2000;12(4):319–23. https://doi.org/10.1016/S0952-8180(00)00162-8.

    Article  CAS  PubMed  Google Scholar 

  36. Steib A, Freys G, Lehmann C, Meyer C, Mahoudeau G. Intraoperative blood losses and transfusion requirements during adult liver transplantation remain difficult to predict. Can J Anesth. 2001;48(11):1075–9. https://doi.org/10.1007/BF03020372.

    Article  CAS  PubMed  Google Scholar 

  37. Massicotte L, Lenis S, Thibeault L, Sassine M, Seal RRA. Effect of low central venous pressure and phlebotomy on blood product transfusion requirements during liver transplantations. Liver Transplant. 2006;12:117–23. https://doi.org/10.1002/lt.20559.

  38. Araujo RL, Pantanali CA, Haddad L, Filho JAR, D’Albuquerque LAC, Andraus W. Does autologous blood transfusion during liver transplantation for hepatocellular carcinoma increase risk of recurrence? World J Gastrointest Surg. 2016;8(2):161. https://doi.org/10.4240/wjgs.v8.i2.161.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Foltys D, Zimmermann T, Heise M, et al. Liver transplantation for hepatocellular carcinoma-is there a risk of recurrence caused by intraoperative blood salvage autotransfusion? Eur Surg Res. 2011;47(3):182–7. https://doi.org/10.1159/000330746.

    Article  CAS  PubMed  Google Scholar 

  40. Liang TB, Li DL, Liang L, et al. Intraoperative blood salvage during liver transplantation in patients with hepatocellular carcinoma: efficiency of leukocyte depletion filters in the removal of tumor cells. Transplantation. 2008;85(6):863–9. https://doi.org/10.1097/TP.0b013e3181671f2e.

    Article  PubMed  Google Scholar 

  41. Muscari F, Suc B, Vigouroux D, et al. Blood salvage autotransfusion during transplantation for hepatocarcinoma: does it increase the risk of neoplastic recurrence? Transpl Int. 2005;18(11):1236–9. https://doi.org/10.1111/j.1432-2277.2005.00207.x.

    Article  PubMed  Google Scholar 

  42. Massicotte L, Denault AY, Beaulieu D, Thibeault L, Hevesi Z, Nozza A, Lapointe RAR. Transfusion rate for 500 consecutive living donor liver transplantations: experience of one liver transplantation center. Transplantation. 2012;94(11):e66–7. https://doi.org/10.1097/TP.0b013e318274ab4a.

    Article  Google Scholar 

  43. Lisman T, Porte RJ. Pathogenesis, prevention, and management of bleeding and thrombosis in patients with liver diseases. Res Pract Thromb Haemost. 2017;1(2):150–61. https://doi.org/10.1002/rth2.12028.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chow JH, Lee K, Abuelkasem E, Udekwu OR, Tanaka KA. Coagulation management during liver transplantation: use of fibrinogen concentrate, recombinant activated factor vii, prothrombin complex concentrate, and antifibrinolytics. Semin Cardiothorac Vasc Anesth. 2018;22(2):164–73. https://doi.org/10.1177/1089253217739689.

    Article  PubMed  Google Scholar 

  45. Toy P, Gajic O, Bacchetti P, et al. Transfusion-related acute lung injury: incidence and risk factors. Clin Trials Obs. 2012;119(7):1757–68. https://doi.org/10.1182/blood-2011-08-370932.An.

    Article  CAS  Google Scholar 

  46. Clifford L, Jia Q, Subramanian A, et al. Characterizing the epidemiology of postoperative transfusion-related acute lung injury. Anesthesiology. 2015;122:12–20.

    Article  Google Scholar 

  47. Benson AB, Austin GL, Berg M, et al. Transfusion-related acute lung injury in ICU patients admitted with gastrointestinal bleeding. Intensive Care Med. 2010;36(10):1710–7. https://doi.org/10.1007/s00134-010-1954-x.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Smith NK, Kim S, Hill B, Goldberg A, DeMaria S, Zerillo J. Transfusion-Related Acute Lung Injury (TRALI) and Transfusion-Associated Circulatory Overload (TACO) in liver transplantation: a case report and focused review. Semin Cardiothorac Vasc Anesth. 2018;22(2). https://doi.org/10.1177/1089253217736298.

  49. De Boer MT, Christensen MC, Asmussen M, et al. The impact of intraoperative transfusion of platelets and red blood cells on survival after liver transplantation. Anesth Analg. 2008;106(1):32–44. https://doi.org/10.1213/01.ane.0000289638.26666.ed.

    Article  PubMed  Google Scholar 

  50. Pereboom ITA, De Boer MT, Haagsma EB, Hendriks HGD, Lisman T, Porte RJ. Platelet transfusion during liver transplantation is associated with increased postoperative mortality due to acute lung injury. Anesth Analg. 2009;108(4):1083–91. https://doi.org/10.1213/ane.0b013e3181948a59.

    Article  PubMed  Google Scholar 

  51. Schiefer J, Lebherz-Eichinger D, Erdoes G, et al. Alterations of endothelial glycocalyx during orthotopic liver transplantation in patients with end-stage liver disease. Transplantation. 2015;99(10):2118–23. https://doi.org/10.1097/TP.0000000000000680.

    Article  CAS  PubMed  Google Scholar 

  52. Spahn DR, Bouillon B, Cerny V, et al. Managment of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17:R76.

    Article  Google Scholar 

  53. Kozek-Langenecker S, Sørensen B, Hess JR, Spahn DR. Clinical effectiveness of fresh frozen plasma compared with fibrinogen concentrate: a systematic review. Crit Care. 2011;15(5):R239. https://doi.org/10.1186/cc10488.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ghadimi K, Levy JH, Welsby IJ. Prothrombin Complex Concentrates for Bleeding in the Perioperative Setting. Anesth Analg. 2016;122(5):1287–300. https://doi.org/10.1016/j.physbeh.2017.03.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sørensen B, Spahn DR, Innerhofer P, Spannagl M, Rossaint R. Clinical review: prothrombin complex concentrates – evaluation of safety and thrombogenicity. Crit Care. 2011;15(1):1–9. https://doi.org/10.1186/cc9311.

    Article  Google Scholar 

  56. CSL Behring. [Package insert] Kcentra Prothrombin Complex Concentrate (Human). 2013.

    Google Scholar 

  57. Sarode R, Milling TJ, Refaai MA, et al. Efficacy and safety of a 4-factor prothrombin complex concentrate in patients on vitamin K antagonists presenting with major bleeding: a randomized, plasma-controlled, phase IIIb study. Circulation. 2013;128(11):1234–43. https://doi.org/10.1161/CIRCULATIONAHA.113.002283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Majeed A, Eelde A, Ågren A, Schulman S, Holmström M. Thromboembolic safety and efficacy of prothrombin complex concentrates in the emergency reversal of warfarin coagulopathy. Thromb Res. 2012;129(2):146–51. https://doi.org/10.1016/j.thromres.2011.07.024.

    Article  CAS  PubMed  Google Scholar 

  59. Pereira D, Liotta E, Mahmoud AA. The use of Kcentra® in the reversal of coagulopathy of chronic liver disease. J Pharm Pract. 2018;31(1):120–5. https://doi.org/10.1177/0897190017696952.

    Article  PubMed  Google Scholar 

  60. Abuelkasem E, Hasan S, Mazzeffi MA, Planinsic RM, Sakai T, Tanaka KA. Reduced requirement for prothrombin complex concentrate for the restoration of thrombin generation in plasma from liver transplant recipients. Anesth Analg. 2017;125(2):609–15. https://doi.org/10.1213/ANE.0000000000002106.

    Article  CAS  PubMed  Google Scholar 

  61. Arshad F, Ickx B, Van Beem RT, et al. Prothrombin complex concentrate in the reduction of blood loss during orthotopic liver transplantation: PROTON-trial. BMC Surg. 2013;13(1):1. https://doi.org/10.1186/1471-2482-13-22.

    Article  CAS  Google Scholar 

  62. Kirchner C, Dirkmann D, Treckmann JW, et al. Coagulation management with factor concentrates in liver transplantation: a single-center experience. Transfusion. 2014;54(1):2760–8. https://doi.org/10.1111/trf.12707.

    Article  PubMed  Google Scholar 

  63. Zamper RPC, Amorim TC, Queiroz VNF, et al. Association between viscoelastic tests-guided therapy with synthetic factor concentrates and allogenic blood transfusion in liver transplantation: a before-after study. BMC Anesthesiol. 2018;18(1):1–12. https://doi.org/10.1186/s12871-018-0664-8.

    Article  CAS  Google Scholar 

  64. Yank V, Tuohy CV, Logan AC, et al. Systematic review: benefits and harms of in-hospital use of recombinant factor VIIa for off-label indications. Ann Intern Med. 2011;154(8)529–40.

    Google Scholar 

  65. Levi M, Levy JH, Andersen HF, Truloff D. Safety of recombinant activated factor VII in randomized clinical trials. N Engl J Med. 2010;363(19):1791–800.

    Article  CAS  Google Scholar 

  66. Hendriks HGD, Meijer K, De Wolf JTM, et al. Reduced transfusion requirements by recombinant factor VIIa in orthotopic liver transplantation. Transplantation. 2001;71(3):402–5. https://doi.org/10.1097/00007890-200102150-00011.

    Article  CAS  PubMed  Google Scholar 

  67. Busani S, Semeraro G, Cantaroni C, Masetti M, Marietta M, Girardis M. Recombinant activated factor VII in critical bleeding after orthotopic liver transplantation. Transplant Proc. 2008;40(6):1989–90. https://doi.org/10.1016/j.transproceed.2008.05.021.

    Article  CAS  PubMed  Google Scholar 

  68. Planinsic RM, van der Meer J, Testa G, et al. Safety and efficacy of a single bolus administration of recombinant factor VIIa in liver transplantation due to chronic liver disease. Liver Transplant. 2005;11(8):895–900. https://doi.org/10.1002/lt.20458.

    Article  Google Scholar 

  69. Lodge JPA, Jonas S, Jones RM, et al. Efficacy and safety of repeated perioperative doses of recombinant factor VIIa in liver transplantation. Liver Transplant. 2005;11(8):973–9. https://doi.org/10.1002/lt.20470.

    Article  Google Scholar 

  70. Bosch J, Thabut D, Bendtsen F, et al. Recombinant factor VIIa for upper gastrointestinal bleeding in patients with cirrhosis: a randomized, double-blind trial. Gastroenterology. 2004;127(4):1123–30. https://doi.org/10.1053/j.gastro.2004.07.015.

    Article  CAS  PubMed  Google Scholar 

  71. Lodge JPA, Jonas S, Oussoultzglou E, et al. Recombinant coagulation factor VIIa in major liver resection. Anesthesiology. 2005;102(4):269–75. https://doi.org/10.1097/01.sa.0000172532.43755.3b.

    Article  CAS  PubMed  Google Scholar 

  72. Pham HP, Hsu SX, Parker-Jones S, Samstein B, Diuguid D, Schwartz J. Recombinant activated factor VII in patients with acute liver failure with UNOS Status 1A: a single tertiary academic centre experience. Vox Sang. 2014;106(1):75–82. https://doi.org/10.1111/vox.12067.

    Article  CAS  PubMed  Google Scholar 

  73. Scheffert JL, Taber DJ, Pilch NA, McGillicuddy JW, Baliga PK, Chavin KD. Timing of factor VIIa in liver transplantation impacts cost and clinical outcomes. Pharmacotherapy. 2013;33(5):483–8. https://doi.org/10.1002/phar.1230.

    Article  CAS  PubMed  Google Scholar 

  74. Fergusson DA, Hebert PC, Mazer CD, et al. A comparison of aprotinin and llysine analogues in high risk cardiac surgery. N Engl J Med. 2008;358(22):2319–31. https://doi.org/10.1056/NEJMoa1602001.

    Article  CAS  PubMed  Google Scholar 

  75. Trzebicki J, Kosieradzki M, Flakiewicz E, et al. Detrimental effect of aprotinin ban on amount of blood loss during liver transplantation: single-center experience. Transplant Proc. 2011;43(5):1725–7. https://doi.org/10.1016/j.transproceed.2011.01.182.

    Article  CAS  PubMed  Google Scholar 

  76. Schofield N, Sugavanam A, Thompson K, Mallet SV. No increase in blood transfusions during liver transplantation since the withdrawal of aprotinin. Liver Transplant. 2014;20:584–90. https://doi.org/10.1002/lt.23839.

  77. Molenaar IQ, Warnaar N, Groen H, TenVergert EM, Slooff MJH, Porte RJ. Efficacy and safety of antifibrinolytic drugs in liver transplantation: a systematic review and meta-analysis. Am J Transplant. 2007;7(1):185–94. https://doi.org/10.1111/j.1600-6143.2006.01591.x.

    Article  CAS  PubMed  Google Scholar 

  78. Badenoch A, Sharma A, Gower S, et al. The effectiveness and safety of tranexamic acid in orthotopic liver transplantation clinical practice: a propensity score matched cohort study. Transplantation. 2017;101(7):1658–65. https://doi.org/10.1097/TP.0000000000001682.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Romano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romano, D., Zerillo, J., Smith, N. (2021). Blood Management in the Liver Transplant Patient. In: Scher, C.S., Kaye, A.D., Liu, H., Perelman, S., Leavitt, S. (eds) Essentials of Blood Product Management in Anesthesia Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-59295-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59295-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59294-3

  • Online ISBN: 978-3-030-59295-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics