Skip to main content

Enhancing Nature

  • Chapter
  • First Online:
The Carbon Dioxide Revolution

Abstract

This Chapter provides an overview of possible solutions to convert carbon dioxide into various bioproducts, such as biofuels, bioplastics and bio-sourced chemicals, mimicking Nature, or even enhancing natural systems. Biotechnological techniques or hybrid systems, made by integrating chemical(electro)catalysis and biological systems, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71

    Article  CAS  PubMed  Google Scholar 

  2. Garvie LAJ (2006) Decay of cacti and carbon cycling. Naturwissenschaften 93:114–118

    Article  CAS  PubMed  Google Scholar 

  3. Sun Q, Li J, Finlay RD, Lian B (2019) Oxalotrophic bacterial assemblages in the ectomycorrhizosphere of forest trees and their effects on oxalate degradation and carbon fixation potential. Chem Geol 514:54–64

    Article  CAS  Google Scholar 

  4. https://inhabitat.com/brilliant-cement-making-technology-mimics-coral-while-removing-co2-from-the-atmosphere/

  5. https://biomimicry.org/message-to-cop21-leaders/

  6. Aresta M, Karimi I, Kawi S (2019) An economy based on CO2 and water. Springer

    Google Scholar 

  7. (a) Dibenedetto A, Colucci A, Aresta M (2016) The need to implement an efficient biomass fractionation and full utilization based on the concept of “biorefinery” for a viable economic utilization of microalgae. Env Sci Pollut Res 23:22274–22283; (b) Dibenedetto A, Aresta M, Dumeignil F (2015) Biorefineries: an introduction. De Gruyter. ISBN 978-3-11-033153-0

    Google Scholar 

  8. Thurman HV (1997) Introductory oceanography. Prentice Hall College, New Jersey, USA

    Google Scholar 

  9. Adesanya VO, Cadena E, Scott SA, Smith AG (2014) Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system. Bioresour Technol 163:343–355

    Article  CAS  PubMed  Google Scholar 

  10. Aresta M, Dibenedetto A, Barberio G (2005) Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study. Fuel Process Technol 86(14-15):1679–1693

    Google Scholar 

  11. Jez S, Spinelli D, Fierro A, Dibenedetto A, Aresta M, Busi E, Basosi R (2017) Comparative life cycle assessment study on environmental impact of oil production from micro-algae and terrestrial oilseed crops. Bioresour Technol 239:266–275

    Google Scholar 

  12. Dibenedetto A (2019) Enhanced fixation of CO2 in land and aquatic biomass. In: Aresta M, Kawi S, Karimi IA (eds) An economy based on carbon dioxide and water. Springer. ISBN 978-3-030-15868-2 (chapter 9)

    Google Scholar 

  13. https://www.aquaculturealliance.org/advocate/farming-algal-fuel-economics-challenge-process-potential/

  14. (a) Harvesting and drying of algal biomass: https://link.Springer.com/chapter10.1007/978-981-13-2378-2_5; (b) A new reactor design fo0r harvesting algae through electrocoagulation-flotationin a continuous mode_Science Direct. https://www.sciencedirect.com/science/article/pii/S221926419310926

  15. de Farias Silva CE, Sforza E, Bertucco A (2019) Enhancing carbohydrate productivity in photosynthetic microorganism production: a comparison between cyanobacteria and microalgae and the effect of cultivation systems. In: Advances in feedstock conversion technologies for alternative fuels and bioproducts. Woodhead Publishing, pp 37–67

    Google Scholar 

  16. Rawat I, Kumar RR, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467

    Article  CAS  Google Scholar 

  17. Dibenedetto A, Aresta M (2019) Beyond fractionation in the utilization of microalgal components. In: Pires JCM, da Cunha Goncalves AL (eds) Bioenergy with carbon capture and storage. Elsevier. ISBN 9780128162293 (chapter 9)

    Google Scholar 

  18. Aresta M, Cornacchia D, Dibenedetto A (2017) Polyfunctional mixed oxides for the oxidative cleavage of lipids and methyl ester of fatty acids. WO2017202955A1

    Google Scholar 

  19. Werpy T, Petersen G (2004) Top value added chemicals from biomass volume I—results of screening for potential candidates from sugars and synthesis gas. Technical report NREL/TP-510-35523

    Google Scholar 

  20. Holladay JE, White JF, Bozel JJ, Johnson D (2007) Top value-added chemicals from biomass: volume II-results of screening for potential candidates from biorefinery lignin. Technical report PNNL-16983

    Google Scholar 

  21. Aresta M, Dibenedetto A (2018) Fuels from recycled carbon. In: Gude VG (ed) Green chemistry for sustainable biofuel production. Apple Academic Press, pp 79–152. ISBN 9781771886390 (chapter 2)

    Google Scholar 

  22. Brown RC (ed) (2019) Thermochemical processing of biomass: conversion into fuels, chemicals and power. Wiley

    Google Scholar 

  23. Sharma HK, Xu C, Qin W (2019) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valorization 10(2):235–251

    Article  CAS  Google Scholar 

  24. Di Donato P, Finore I, Poli A, Nicolaus B, Lama L (2019) The production of second generation bioethanol: the biotechnology potential of thermophilic bacteria. J Cleaner Prod 233:1410–1417

    Article  CAS  Google Scholar 

  25. Hu L, Wu Z, Xu J, Sun Y, Lin L, Liu S (2014) Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid. Chem Eng J 244:137–144

    Article  CAS  Google Scholar 

  26. Abou-Yousef H, Hassan EB (2014) A novel approach to enhance the activity of H-form zeolite catalyst for production of hydroxymethylfurfural from cellulose. J Ind Eng Chem 20:1952–1957

    Article  CAS  Google Scholar 

  27. Ordomsky VV, van der Schaaf J, Schouten JC, Nijhuis TA (2012) The effect of solvent addition on fructose dehydration to 5-hydroxymethylfurfural in biphasic system over zeolites. J Catal 287:68–75

    Article  CAS  Google Scholar 

  28. Xu H, Miao Z, Zhao H, Yang J, Zhao J, Song H, Liang N, Chou L (2015) Dehydration of fructose into 5-hydroxymethylfurfural by high stable ordered mesoporous zirconium phosphate. Fuel 145:234–240

    Article  CAS  Google Scholar 

  29. Jimenez-Morales I, Teckchandani-Ortiz A, Santamaria-Gonzalez J, Maireless-Torres P, Jimenez-Lûpez A (2014) elective dehydration of glucose to 5-hydroxymethylfurfural on acidic mesoporous tantalum phosphate. Appl Catal B 144:22–28

    Article  CAS  Google Scholar 

  30. Ordomsky V, Van der Schaaf J, Schouten JC, Nijhuis TA (2013) Glucose dehydration to 5‐hydroxymethylfurfural in a biphasic system over solid acid foams ChemSusChem 6:1697–1707

    Google Scholar 

  31. Zhang Y, Wang J, Ren J, Liu X, Li X, Xia Y, Lu G, Wang Y (2012) Mesoporous niobium phosphate: an excellent solid acid for the dehydration of fructose to 5-hydroxymethylfurfural in water. Catal Sci Technol 2:2485–2491

    Article  CAS  Google Scholar 

  32. Zhuang J, Lin L, Pang C, Liu Y (2011) Selective catalytic conversion of glucose to 5-hydroxymethylfurfural over Zr (H2PO4)2 solid acid catalysts. Adv Mater Res 236–238:134–137

    Article  CAS  Google Scholar 

  33. Dibenedetto A, Aresta M, Pastore C, di Bitonto L, Angelini A, Quaranta E (2015) Conversion of fructose into 5-HMF: a study on the behaviour of heterogeneous cerium-based catalysts and their stability in aqueous media under mild conditions. RSC Adv 5:26941–26948

    Article  CAS  Google Scholar 

  34. Dibenedetto A, Aresta M, di Bitonto L, Pastore C (2016) Organic carbonates: efficient extraction solvents for the synthesis of HMF in aqueous media with cerium phosphates as catalysts. Chemsuschem 9(1):118–125

    Article  CAS  PubMed  Google Scholar 

  35. Kläusli T, Biochem AVA (2014) Commercialising renewable platform chemical 5-HMF. Green Process Synth 3:235–236

    Google Scholar 

  36. Executive Summary EU Project BIOCONSEPTS, Specialty and Bio Based Polymers, RND_001346

    Google Scholar 

  37. Ventura M, Aresta M, Dibenedetto A (2016) Selective aerobic oxidation of 5-(Hydroxymethyl)furfural to 5-formyl-2-furancarboxylic acid in water. Chemsuschem 9(10):1096–1100

    Article  CAS  PubMed  Google Scholar 

  38. Dibenedetto A, Ventura M, Lobefaro F, de Giglio E, Distaso M, Nocito F (2018) Selective aerobic oxidation of 5-(hydroxymethyl) furfural to 2,5-diformylfuran or 2-formyl-5-furancarboxylic acid in water using MgO· CeO2 mixed oxides as catalysts. Chemsuschem 11(8):1305–1315

    Article  PubMed  CAS  Google Scholar 

  39. Dibenedetto A, Ventura M, Lobefaro F, de Giglio E, Altomare A, Cometa S, Nocito F (2018) Tunable mixed oxides based on CeO2 for the selective aerobic oxidation of 5-(hydroxymethyl) furfural to FDCA in water. Green Chem 20(17):3921–3926

    Article  Google Scholar 

  40. Dibenedetto A, Ventura M, Williamson D, Lobefaro F, Jones MD, Mattia D, Nocito F, Aresta M (2018) Sustainable synthesis of oxalic (and succinic) acid via aerobic oxidation of C6 polyols by using M@ CNT/NCNT (M = Fe, V) based catalysts in mild conditions. Chemsuschem 11(6):1073–1081

    Article  PubMed  CAS  Google Scholar 

  41. Omoruyi U, Page S, Hallett J, Miller PW (2016) Homogeneous catalyzed reactions of levulinic acid: to γ-valerolactone and beyond. Chemsuschem 9(16):2037–2047

    Article  CAS  PubMed  Google Scholar 

  42. Dutta S, Iris KM, Tsang DC, Ng YH, Ok YS, Sherwood J, Clark JH (2019) Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: a critical review. Chem Eng J 372:992–1006

    Article  CAS  Google Scholar 

  43. Anbarasan P, Baer ZC, Sreekumar S, Gross E, Binder JB, Blanch HW, Clark DS, Toste FD (2012) Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 491:235–239

    Google Scholar 

  44. Hilpmann G, Steudler S, Ayubi MM, Pospiech A, Walther T, Bley T, Lange R (2019) Combining chemical and biological catalysis for the conversion of hemicelluloses: hydrolytic hydrogenation of xylan to xylitol. Catal Lett 149(1):69–76

    Article  CAS  Google Scholar 

  45. Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 2975

    Google Scholar 

  46. Aresta M, Dibenedetto A, Angelini A (2013) The changing paradigm in CO2 utilization. J CO2 Utiliz 3:65–73

    Google Scholar 

  47. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72

    Article  CAS  PubMed  Google Scholar 

  48. Yelton AP, Acinas SG, Sunagawa S, Bork P, Pedrós-Alió C, Chisholm SW (2016) Global genetic capacity for mixotrophy in marine picocyanobacterial. ISME J 10:2946–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. https://www.marketsandmarkets.com/Market-Reports/pha-market-395.html

  50. https://www.transparencymarketresearch.com/2-3-butanediol-market.html

  51. Han MW, Hyun JL (2017) Toward solar biodiesel production from CO2 using engineered cyanobacteria. FEMS Microbiol Lett 364:9

    Google Scholar 

  52. Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5:9857–9865

    Article  CAS  Google Scholar 

  53. Angermayr SA, van der Woude AD, Correddu D (2014) Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnol Biofuels 7:99

    Google Scholar 

  54. Wang Y, Sun T, Gao X (2016) Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803. Metab Eng 34:60–70

    Google Scholar 

  55. Kusakabe T, Tatsuke T, Tsuruno K (2013) Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab Eng 20:101–108

    Article  CAS  PubMed  Google Scholar 

  56. Hirokawa Y, Maki Y, Tatsuke T (2016) Cyanobacterial production of 1,3-propanediol directly from carbon dioxide using a synthetic metabolic pathway. Metab Eng 34:97–103

    Article  CAS  PubMed  Google Scholar 

  57. Lan EI, Ro SY, Liao JC (2013) Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy Environ Sci 6:2672–2681

    Article  CAS  Google Scholar 

  58. Shen CR, Liao JC (2012) Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. Energy Environ Sci 5:9574–9583

    Article  CAS  Google Scholar 

  59. Kanno M, Carroll AL, Atsumi S (2017) Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. Nat Commun 8:14724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotech 27:1177–1180

    Article  CAS  Google Scholar 

  61. https://www.photanol.com/

  62. https://phytonix.com/

  63. https://www.novamont.com/eng/read-press-release/mater-biotech/

  64. https://www.grandviewresearch.com/industry-analysis/1-4-butanediol-market

  65. https://bioenergyinternational.com/research-development/30229

  66. Kondaveeti S, Kakarla R, Kim HS, Kim BG, Min B (2017) The performance and long-term stability of low-cost separators in single-chamber bottle-type microbial fuel cells. Environ Technol 1–10

    Google Scholar 

  67. Rozendal RA, Hamelers HV, Rabaey K, Keller J, Buisman CJ (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26(8):450–459

    Article  CAS  PubMed  Google Scholar 

  68. Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioixde with electricity. Curr Opin Biotechnol 24:385–390

    Article  CAS  PubMed  Google Scholar 

  69. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    Article  CAS  PubMed  Google Scholar 

  70. Chiranjeevi P, Bulut M, Breugelmans T, Patil SA, Pant D (2019) Current trends in enzymatic electrosynthesis for CO2 reduction. Curr Opin Green Sustain Chem 16:65–70

    Article  Google Scholar 

  71. Huang YX, Hu Z (2018) An integrated electrochemical and biochemical system for sequential reduction of CO2 to methane. Fuel 220:8–13

    Article  CAS  Google Scholar 

  72. Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101(9):3085–3090

    Google Scholar 

  73. Feng Q, Song YC, Ahn Y (2018) Electroactive microorganisms in bulk solution contribute significantly to methane production in bioelectrochemical anaerobic reactor. Bioresour Technol 259:119–127

    Article  CAS  PubMed  Google Scholar 

  74. Liu D, Roca‐Puigros M, Geppert F, Caizan-Juanarena L, Na Ayudthaya SP, Buisman C, ter Heijne A (2018) Granular carbon‐based electrodes as cathodes in methane‐producing bioelectrochemical systems. Front Bioeng Biotechnol 6:1–10

    Google Scholar 

  75. Zhen G, Zheng S, Lu X, Zhu X, Mei J, Kobayashi T, Xu K, Li YY, Zhao Y (2018) A comprehensive comparison of five different carbon-based cathode materials in CO2 electromethanogenesis: long-term performance, cell-electrode contact behaviors and extracellular electron transfer pathways. Bioresour Technol 266:382–388

    Article  CAS  PubMed  Google Scholar 

  76. Zeppilli M, Chouchane H, Scardigno L, Mahjoubi M, Gacitua M, Askri R, Majone M (2020) Bioelectrochemical vs hydrogenophilic approach for CO2 reduction into methane and acetate. Chem Eng J 125243

    Google Scholar 

  77. Yuan M, Kummer MJ, Minteer SD (2019) Strategies for bioelectrochemical CO2 reduction. Chem Eur J 25(63):14258–14266

    Google Scholar 

  78. Batlle-Vilanova P, Rovira-Alsina L, Puig S, Dolors Balaguer M, Icaran P, Monsalvo VM, Rogalla F, Colprim J (2019) Biogas upgrading, CO2 valorisation and economic revaluation of bioelectrochemical systems through anodic chlorine production in the framework of wastewater treatment plants. Sci Total Environ 690:352–360

    Google Scholar 

  79. De Godos I, Cano R, Santiago JR, Lara E, Llamas B (2015) Device and method for simultaneous removal of hydrogen sulphide and carbon dioxide from biogas. EP 3061515 A1

    Google Scholar 

  80. Batlle-Vilanova P, Puig S, Gonzalez-Olmos R, Balaguer MD, Colprim J (2016) Continuous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture. J Chem Technol Biotechnol 91(4):921–927

    Article  CAS  Google Scholar 

  81. Pavel M, Pant D, Patra S (2017) Integrated photobioelectrochemical systems: a paradigm shift in artificial photosynthesis. Trends Biotechnol 35(4):285–287

    Article  CAS  Google Scholar 

  82. Aresta M, Dibenedetto A, Baran T, Angelini A, Łabuz P, Macyk W (2014) An integrated photocatalytic-enzymatic system for the reduction of CO2 to methanol in bio-glycerol-water. Beilstein J Org Chem 10:2556–2565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Aresta M, Dibenedetto A, Macyk W, Baran T (2013) Photocatalysts working in the visible region for the reduction of NAD+ to NADH within an hybrid chemo-enzymatic process of CO2 reduction to methanol. MI2013A001135

    Google Scholar 

  84. Schlager S, Dibenedetto A, Aresta M, Apaydin DH, Dumitru LM, Neugebauer H, Sariciftci NS (2017) Biocatalytic and bioelectrocatalytic approaches for the reduction of carbon dioxide using enzymes. Energy Technol 5(6):812–821

    Article  CAS  Google Scholar 

  85. Bajracharya S, van den Burg B, Vanbroekhoven K, De Wever H, Buisman CJ, Pant D, Strik DP (2017) In situ acetate separation in microbial electrosynthesis from CO2 using ion-exchange resin. Electrochim Acta 237:267–275

    Article  CAS  Google Scholar 

  86. Aryal N, Wan L, Overgaard MH, Stoot AC, Chen Y, Tremblay PL, Zhang T (2019) Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode. Bioelectrochemistry 128:83–93

    Article  CAS  PubMed  Google Scholar 

  87. Morinaga T, Kawada N (1990) The production of acetic acid from carbon dioxide and hydrogen by an anaerobic bacterium. J Biotechnol 14(2):187–194

    Article  CAS  Google Scholar 

  88. López-Garzón CS, Straathof AJJ (2014) Recovery of carboxylic acids produced by fermentation. Biotechnol Adv 32:873–904

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aresta, M., Dibenedetto, A. (2021). Enhancing Nature. In: The Carbon Dioxide Revolution. Springer, Cham. https://doi.org/10.1007/978-3-030-59061-1_11

Download citation

Publish with us

Policies and ethics