Skip to main content

The SF3b Complex is an Integral Component of the Spliceosome and Targeted by Natural Product-Based Inhibitors

  • Chapter
  • First Online:
Macromolecular Protein Complexes III: Structure and Function

Part of the book series: Subcellular Biochemistry ((SCBI,volume 96))

Abstract

In this chapter, the essential role of the SF3b multi-protein complex will be discussed in the context of the overall spliceosome. SF3b is critical during spliceosome assembly for recognition of the branch point (BP) adenosine and, by de facto, selection of the 3′ splice site. This complex is highly dynamic, undergoing significant conformational changes upon loading of the branch duplex RNA and in its relative positioning during spliceosomal remodeling from the A, pre-B, B, Bact and B* complexes. Ultimately, during the spliceosome activation phase, SF3b must be displaced to unmask the branch point adenosine for the first splicing reaction to occur. In certain cancers, such as the hematological malignancies CML, CLL and MDS, the SF3b subunit SF3B1 is frequently mutated. Recent studies suggest these mutations lead to inappropriate branch point selection and mis-splicing events that appear to be drivers of disease. Finally, the SF3b complex is the target for at least three different classes of natural product-based inhibitors. These inhibitors bind in the BP adenosine-binding pocket and demonstrate a pre-mRNA competitive mechanism of action resulting in either intron retention or exon skipping. These compounds are extremely useful as chemical probes to isolate and characterize early stages of spliceosome assembly. They are also being explored preclinically and clinically as possible agents for hematological cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BP:

Branch point

BPRS:

Branch point recognition sequence

BS:

Branch sequence

BSL:

Branch stem loop

CMML:

Chronic myelomonocytic leukemia

CLL:

Chronic lymphocytic leukemia

EM:

Electron microscopy

ILS:

Intron lariat spliceosome

ISL:

Internal stem loop

MDS:

Myelodysplastic syndromes

mRNA:

Messenger RNA

NMD:

Nonsense-mediated decay

NMR:

Nuclear magnetic resonance

NTC:

Nineteen complex

NTR:

Nineteen related

Plad:

Pladienolide

PY:

Polypyrimidine

RNA:

Ribonucleic acid

RRM:

RNA recognition motif

SF:

Splicing factor

snRNP:

Small nuclear ribonucleoproteins

snRNA:

Small nuclear RNAs

SS:

Splice site

ULM:

U2AF ligand motifs

UHM:

U2AF homology motif

U2AF:

U2 auxiliary factor

WT:

Wild type

References

  • Agafonov DE, Deckert J et al (2011) Semiquantitative proteomic analysis of the human spliceosome via a novel two-dimensional gel electrophoresis method. Mol Cell Biol 31(13):2667–2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal AA, Salsi E et al (2016) An extended U2AF(65)-RNA-binding domain recognizes the 3’ splice site signal. Nat Commun 7:10950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal AA, Yu L et al (2018) Targeting splicing abnormalities in cancer. Curr Opin Genet Dev 48:67–74

    Article  CAS  PubMed  Google Scholar 

  • Allan RK, Ratajczak T (2011) Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress Chaperones 16(4):353–367

    Article  CAS  PubMed  Google Scholar 

  • Alsafadi S, Houy A et al (2016) Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat Commun 7:10615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai R, Wan R et al (2018) Structures of the fully assembled Saccharomyces cerevisiae spliceosome before activation. Science 360(6396):1423–1429

    Article  CAS  PubMed  Google Scholar 

  • Bai R, Yan C, et al (2017) Structure of the post-catalytic spliceosome from Saccharomyces cerevisiae. Cell 171(7):1589–1598 e1588

    Google Scholar 

  • Bertram K, Agafonov DE, et al (2017a) Cryo-EM structure of a pre-catalytic human spliceosome primed for activation. Cell 170(4):701–713 e711

    Google Scholar 

  • Bertram K, Agafonov DE, et al (2017) Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature 542(7641):318–323

    Google Scholar 

  • Brosi R, Hauri HP et al (1993) Separation of splicing factor SF3 into two components and purification of SF3a activity. J Biol Chem 268(23):17640–17646

    Article  CAS  PubMed  Google Scholar 

  • Buonamici S, Yoshimi A et al (2016) H3B-8800, an orally bioavailable modulator of the SF3b complex, shows efficacy in spliceosome-mutant myeloid malignancies. Blood 128:966

    Article  Google Scholar 

  • Charenton C, Wilkinson ME et al (2019) Mechanism of 5’ splice site transfer for human spliceosome activation. Science 364(6438):362–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HC, Tseng CK et al (2013) Link of NTR-mediated spliceosome disassembly with DEAH-box ATPases Prp2, Prp16, and Prp22. Mol Cell Biol 33(3):514–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrionero A, Minana B et al (2011) Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev 25(5):445–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corsini L, Bonnal S et al (2007) U2AF-homology motif interactions are required for alternative splicing regulation by SPF45. Nat Struct Mol Biol 14(7):620–629

    Article  CAS  PubMed  Google Scholar 

  • Cretu C, Agrawal AA, et al (2018) Structural basis of splicing modulation by antitumor macrolide compounds. Mol cell 70(2):265–273 e268

    Google Scholar 

  • Cretu C, Schmitzova J et al (2016) Molecular architecture of SF3b and structural consequences of its cancer-related mutations. Mol Cell 64(2):307–319

    Article  CAS  PubMed  Google Scholar 

  • Darman RB, Seiler M et al (2015) Cancer-associated SF3B1 hotspot mutations induce cryptic 3’ splice site selection through use of a different branch point. Cell Rep 13(5):1033–1045

    Article  CAS  PubMed  Google Scholar 

  • Fica SM, Oubridge C et al (2017) Structure of a spliceosome remodelled for exon ligation. Nature 542(7641):377–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fica SM, Oubridge C et al (2019) A human postcatalytic spliceosome structure reveals essential roles of metazoan factors for exon ligation. Science 363(6428):710–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finci LI, Zhang X et al (2018) The cryo-EM structure of the SF3b spliceosome complex bound to a splicing modulator reveals a pre-mRNA substrate competitive mechanism of action. Genes Dev 32(3–4):309–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folco EG, Coil KE et al (2011) The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Genes Dev 25(5):440–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galej WP, Wilkinson ME et al (2016) Cryo-EM structure of the spliceosome immediately after branching. Nature 537(7619):197–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Alonso S, Ocana A et al (2020) Trastuzumab emtansine: mechanisms of action and resistance, clinical progress, and beyond. Trend Cancer 6(2):130–146

    Article  CAS  Google Scholar 

  • Golas MM, Sander B et al (2003) Molecular architecture of the multiprotein splicing factor SF3b. Science 300(5621):980–984

    Article  CAS  PubMed  Google Scholar 

  • Gozani O, Potashkin J et al (1998) A potential role for U2AF-SAP 155 interactions in recruiting U2 snRNP to the branch site. Mol Cell Biol 18(8):4752–4760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hang J, Wan R et al (2015) Structural basis of pre-mRNA splicing. Science 349(6253):1191–1198

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Miura T et al (2011) Identification of SAP155 as the target of GEX1A (Herboxidiene), an antitumor natural product. ACS Chem Biol 6(3):229–233

    Article  CAS  PubMed  Google Scholar 

  • Haselbach D, Komarov I et al (2018) Structure and conformational dynamics of the human spliceosomal B(act) complex. Cell 172(3):454–464 e411

    Google Scholar 

  • Hong DS, Kurzrock R et al (2014) A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest New Drugs 32(3):436–444

    Article  CAS  PubMed  Google Scholar 

  • Horowitz DS (2012) The mechanism of the second step of pre-mRNA splicing. Wiley Interdisc Rev RNA 3(3):331–350

    Article  CAS  Google Scholar 

  • Inoue D, Chew GL et al (2019) Spliceosomal disruption of the non-canonical BAF complex in cancer. Nature 574(7778):432–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaida D, Motoyoshi H et al (2007) Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol 3(9):576–583

    Article  CAS  PubMed  Google Scholar 

  • Kastner B, Will CL et al (2019) Structural insights into nuclear pre-mRNA splicing in higher eukaryotes. Cold Spring Harbor Persp Biol 11(11)

    Google Scholar 

  • Kondo Y, Oubridge C, et al (2015) Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5’ splice site recognition. eLife 4

    Google Scholar 

  • Kotake Y, Sagane K et al (2007) Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol 3(9):570–575

    Article  CAS  PubMed  Google Scholar 

  • Kramer A, Gruter P et al (1999) Combined biochemical and electron microscopic analyses reveal the architecture of the mammalian U2 snRNP. J Cell Biol 145(7):1355–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landau DA, Carter SL et al (2013) Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152(4):714–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lardelli RM, Thompson JX et al (2010) Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing. RNA 16(3):516–528

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Liu S et al (2019) A unified mechanism for intron and exon definition and back-splicing. Nature 573(7774):375–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin PC, Xu RM (2012) Structure and assembly of the SF3a splicing factor complex of U2 snRNP. EMBO J 31(6):1579–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Li X et al (2017) Structure of the yeast spliceosomal postcatalytic P complex. Science 358(6368):1278–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Luyten I et al (2001) Structural basis for recognition of the intron branch site RNA by splicing factor 1. Science 294(5544):1098–1102

    Article  CAS  PubMed  Google Scholar 

  • Loerch S, Leach JR et al (2019) The pre-mRNA splicing and transcription factor Tat-SF1 is a functional partner of the spliceosome SF3b1 subunit via a U2AF homology motif interface. J Biol Chem 294(8):2892–2902

    Article  CAS  PubMed  Google Scholar 

  • Loerch S, Maucuer A et al (2014) Cancer-relevant splicing factor CAPERalpha engages the essential splicing factor SF3b155 in a specific ternary complex. J Biol Chem 289(25):17325–17337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller-Wideman M, Makkar N et al (1992) Herboxidiene, a new herbicidal substance from Streptomyces chromofuscus A7847. Taxonomy, fermentation, isolation, physico-chemical and biological properties. J Antibio 45(6):914–921

    Article  CAS  Google Scholar 

  • Mizui Y, Sakai T et al (2004) Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. III. In vitro and in vivo antitumor activities. J Antibio 57(3):188–196

    Article  CAS  Google Scholar 

  • Nakajima H, Sato B et al (1996) New antitumor substances, FR901463, FR901464 and FR901465. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J Antibio 49(12):1196–1203

    Article  CAS  Google Scholar 

  • Newman AJ, Norman C (1992) U5 snRNA interacts with exon sequences at 5’ and 3’ splice sites. Cell 68(4):743–754

    Article  CAS  PubMed  Google Scholar 

  • Obeng EA, Chappell RJ et al (2016) Physiologic expression of Sf3b1(K700E) causes impaired erythropoiesis, aberrant splicing, and sensitivity to therapeutic spliceosome modulation. Cancer Cell 30(3):404–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohrt T, Odenwalder P et al (2013) Molecular dissection of step 2 catalysis of yeast pre-mRNA splicing investigated in a purified system. RNA 19(7):902–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paolella BR, Gibson WJ, et al (2017) Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. eLife 6

    Google Scholar 

  • Patnaik MM, Lasho TL et al (2013) Spliceosome mutations involving SRSF2, SF3B1, and U2AF35 in chronic myelomonocytic leukemia: prevalence, clinical correlates, and prognostic relevance. Am J Hematol 88(3):201–206

    Article  CAS  PubMed  Google Scholar 

  • Pauling MH, McPheeters DS et al (2000) Functional Cus1p is found with Hsh155p in a multiprotein splicing factor associated with U2 snRNA. Mol Cell Biol 20(6):2176–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perriman R, Ares M Jr (2010) Invariant U2 snRNA nucleotides form a stem loop to recognize the intron early in splicing. Mol Cell 38(3):416–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaschka C, Lin PC et al (2017) Structure of a pre-catalytic spliceosome. Nature 546(7660):617–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaschka C, Lin PC et al (2018) Prespliceosome structure provides insights into spliceosome assembly and regulation. Nature 559(7714):419–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomeranz Krummel DA, Oubridge C et al (2009) Crystal structure of human spliceosomal U1 snRNP at 5.5 A resolution. Nature 458(7237):475–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puthenveetil S, Loganzo F et al (2016) Natural product splicing inhibitors: a new class of antibody-drug conjugate (ADC) payloads. Bioconjug Chem 27(8):1880–1888

    Article  CAS  PubMed  Google Scholar 

  • Query CC, Strobel SA et al (1996) Three recognition events at the branch-site adenine. EMBO J 15(6):1392–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauhut R, Fabrizio P et al (2016) Molecular architecture of the Saccharomyces cerevisiae activated spliceosome. Science 353(6306):1399–1405

    Article  CAS  PubMed  Google Scholar 

  • Roybal GA, Jurica MS (2010) Spliceostatin A inhibits spliceosome assembly subsequent to prespliceosome formation. Nucleic Acids Res 38(19):6664–6672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seiler M, Yoshimi A et al (2018) H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med 24(4):497–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y (2017) The spliceosome: a protein-directed metalloribozyme. J Mol Biol 429:2640–2653

    Article  CAS  PubMed  Google Scholar 

  • Sontheimer EJ, Steitz JA (1993) The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science 262(5142):1989–1996

    Article  CAS  PubMed  Google Scholar 

  • Stepanyuk GA, Serrano P, et al (2016) UHM-ULM interactions in the RBM39-U2AF65 splicing-factor complex. Acta Crystallograph Sect D Struct Biol 72(Pt 4):497–511

    Google Scholar 

  • Tang Q, Rodriguez-Santiago S et al (2016) SF3B1/Hsh155 HEAT motif mutations affect interaction with the spliceosomal ATPase Prp5, resulting in altered branch site selectivity in pre-mRNA splicing. Genes Dev 30(24):2710–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng T, Tsai JH et al (2017) Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A-SF3b complex. Nat Commun 8:15522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thickman KR, Swenson MC et al (2006) Multiple U2AF65 binding sites within SF3b155: thermodynamic and spectroscopic characterization of protein-protein interactions among pre-mRNA splicing factors. J Mol Biol 356(3):664–683

    Article  CAS  PubMed  Google Scholar 

  • Toroney R, Nielsen KH et al (2019) Termination of pre-mRNA splicing requires that the ATPase and RNA unwindase Prp43p acts on the catalytic snRNA U6. Genes Dev 33(21–22):1555–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng CK, Liu HL et al (2011) DEAH-box ATPase Prp16 has dual roles in remodeling of the spliceosome in catalytic steps. RNA 17(1):145–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Feltz C, Hoskins AA (2019) Structural and functional modularity of the U2 snRNP in pre-mRNA splicing. Crit Rev Biochem Mol Biol 54(5):443–465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Roon AM, Oubridge C et al (2017) Crystal structure of U2 snRNP SF3b components: Hsh49p in complex with Cus1p-binding domain. RNA 23(6):968–981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vigevani L, Gohr A et al (2017) Molecular basis of differential 3’ splice site sensitivity to anti-tumor drugs targeting U2 snRNP. Nat Commun 8(1):2100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wan R, Bai R, et al (2019a) Structures of the catalytically activated yeast spliceosome reveal the mechanism of branching. Cell 177(2):339–351 e313

    Google Scholar 

  • Wan R, Bai R, et al (2019b) How is precursor messenger RNA spliced by the spliceosome? Ann Rev Biochem

    Google Scholar 

  • Wang W, Maucuer A et al (2013) Structure of phosphorylated SF1 bound to U2AF(6)(5) in an essential splicing factor complex. Structure 21(2):197–208

    Article  CAS  PubMed  Google Scholar 

  • Wan R, Yan C et al (2016) Structure of a yeast catalytic step I spliceosome at 3.4 A resolution. Science 353(6302):895–904

    Article  CAS  PubMed  Google Scholar 

  • Wan R, Yan C, et al (2017) Structure of an intron lariat spliceosome from Saccharomyces cerevisiae. Cell 171(1):120–132 e112

    Google Scholar 

  • Wells SE, Neville M et al (1996) CUS1, a suppressor of cold-sensitive U2 snRNA mutations, is a novel yeast splicing factor homologous to human SAP 145. Genes Dev 10(2):220–232

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson ME, Charenton C, et al (2019) RNA splicing by the spliceosome. Ann Rev Biochem

    Google Scholar 

  • Wilkinson ME, Fica SM et al (2017) Postcatalytic spliceosome structure reveals mechanism of 3’-splice site selection. Science 358(6368):1283–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Will CL, Schneider C et al (2001) A novel U2 and U11/U12 snRNP protein that associates with the pre-mRNA branch site. EMBO J 20(16):4536–4546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu YZ, Newnham CM et al (2004) Prp5 bridges U1 and U2 snRNPs and enables stable U2 snRNP association with intron RNA. EMBO J 23(2):376–385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan C, Hang J et al (2015) Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 349(6253):1182–1191

    Article  CAS  PubMed  Google Scholar 

  • Yan D, Perriman R et al (1998) CUS2, a yeast homolog of human Tat-SF1, rescues function of misfolded U2 through an unusual RNA recognition motif. Mol Cell Biol 18(9):5000–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan C, Wan R et al (2016) Structure of a yeast activated spliceosome at 3.5 A resolution. Science 353(6302):904–911

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Wan R et al (2017) Structure of a yeast step II catalytically activated spliceosome. Science 355(6321):149–155

    Article  CAS  PubMed  Google Scholar 

  • Yokoi A, Kotake Y et al (2011) Biological validation that SF3b is a target of the antitumor macrolide pladienolide. FEBS J 278(24):4870–4880

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Ogawa S (2014) Splicing factor mutations and cancer. Wiley Interdisc Rev RNA 5(4):445–459

    Article  CAS  Google Scholar 

  • Yoshida K, Sanada M et al (2011) Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478(7367):64–69

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura SH, Hirano T (2016) HEAT repeats—versatile arrays of amphiphilic helices working in crowded environments? J Cell Sci 129(21):3963–3970

    CAS  PubMed  Google Scholar 

  • Zhang X, Yan C, et al (2017) An atomic structure of the human spliceosome. Cell 169(5):918–929 e914

    Google Scholar 

  • Zhang X, Yan C et al (2018) Structure of the human activated spliceosome in three conformational states. Cell Res 28(3):307–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan X, Yan C et al (2018) Structure of a human catalytic step I spliceosome. Science 359(6375):537–545

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Derti A et al (2015) A chemical genetics approach for the functional assessment of novel cancer genes. Can Res 75(10):1949–1958

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Larsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Larsen, N.A. (2021). The SF3b Complex is an Integral Component of the Spliceosome and Targeted by Natural Product-Based Inhibitors. In: Harris, J.R., Marles-Wright, J. (eds) Macromolecular Protein Complexes III: Structure and Function. Subcellular Biochemistry, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-030-58971-4_12

Download citation

Publish with us

Policies and ethics